|

楼主 |
发表于 2015-12-4 22:26
|
显示全部楼层
本帖最后由 愚工688 于 2015-12-4 15:12 编辑
在使用概率方法计算偶数的素对数量时,对计算值的相对误差作统计计算,可以发现大偶数的素对计算值的相对误差的波动是比较小的。因此可以采用误差修正的方法,使得素对计算式的计算精度得到大幅的提高。
用Sp( m *)=Sp( m )/(1+μ) 来计算100亿-120亿区间偶数的素对数量的实例,这里的μ=0.1502:
G(10000000802) = 15183202 ,Sp( 10000000802 *)≈ 15173441.6 , Δ≈-0.00064284
G(10000000804) = 14150176 ,Sp( 10000000804 *)≈ 14140564.5 , Δ≈-0.00067925
G(10000000806) = 28313664 ,Sp( 10000000806 *)≈ 28294557.9 , Δ≈-0.00067480
G(10000000808) = 17343454 ,Sp( 10000000808 *)≈ 17333388.8 , Δ≈-0.00058035
G(10000000810) = 18202212 ,Sp( 10000000810 *)≈ 18190524.4 , Δ≈-0.00064210
G(10000000812) = 28714269 ,Sp( 10000000812 *)≈ 28689535.4 , Δ≈-0.00086137
G(10000000814) = 14568016 ,Sp( 10000000814 *)≈ 14560441.7 , Δ≈-0.00051993
G(10000000816) = 14889097 ,Sp( 10000000816 *)≈ 14882202.5 , Δ≈-0.00046306
G(10000000818) = 27305553 ,Sp( 10000000818 *)≈ 27286463.9 , Δ≈-0.00069909
G(10000000820) = 18198062 ,Sp( 10000000820 *)≈ 18189358.7 , Δ≈-0.00047825
G(10000000822) = 16679670 ,Sp( 10000000822 *)≈ 16668525.8 , Δ≈-0.00066813
G(10000000824) = 30653823 ,Sp( 10000000824 *)≈ 30634709.3 , Δ≈-0.00062353
G(10000000826) = 13682025 ,Sp( 10000000826 *)≈ 13671356.7 , Δ≈-0.00077973
G(10000000828) = 13862447 ,Sp( 10000000828 *)≈ 13851528.6 , Δ≈-0.00078762
G(10000000850) = 21879940 ,Sp( 10000000850 *)≈ 21863194 , Δ≈-0.00030846
G(10000000852) = 13653095 ,Sp( 10000000852 *)≈ 13642019 , Δ≈-0.00081124
G(10000000854) = 27763670 ,Sp( 10000000854 *)≈ 27745404 , Δ≈-0.00065791
G(10000000856) = 13653319 ,Sp( 10000000856 *)≈ 13647539.9 , Δ≈-0.00042327
近120亿的偶数的素对计算实例:
G(11999999960) = 23436565 ,Sp( 11999999960 *)≈ 23440609.3 , Δ≈ 0.00017256
G(11999999962) = 16271924 ,Sp( 11999999962 *)≈ 16274977.5 , Δ≈ 0.00018765
G(11999999964) = 32708905 ,Sp( 11999999964 *)≈ 32717720.1 , Δ≈ 0.00026950
G(11999999966) = 16530655 ,Sp( 11999999966 *)≈ 16533804.3 , Δ≈ 0.00019051
G(11999999968) = 17941438 ,Sp( 11999999968 *)≈ 17943812 , Δ≈ 0.00013232
G(11999999970) = 52953426 ,Sp( 11999999970 *)≈ 52965350.4 , Δ≈ 0.00022518
G(11999999972) = 16184903 ,Sp( 11999999972 *)≈ 16187043 , Δ≈ 0.00013222
G(11999999974) = 17154434 ,Sp( 11999999974 *)≈ 17159788 , Δ≈ 0.00031211
G(11999999976) = 32271942 ,Sp( 11999999976 *)≈ 32277617 , Δ≈ 0.00017585
G(11999999978) = 16108759 ,Sp( 11999999978 *)≈ 16115418.9 , Δ≈ 0.00041343
G(11999999980) = 21710462 ,Sp( 11999999980 *)≈ 21713406.6 , Δ≈ 0.00013563
G(11999999982) = 32860257 ,Sp( 11999999982 *)≈ 32862815.1 , Δ≈ 0.00007894
G(11999999984) = 20624733 ,Sp( 11999999984 *)≈ 20627736.2 , Δ≈ 0.00014560
G(11999999986) = 17836817 ,Sp( 11999999986 *)≈ 17843467.5 , Δ≈ 0.00037285
G(11999999988) = 33141776 ,Sp( 11999999988 *)≈ 33151719 , Δ≈ 0.00030001
G(11999999990) = 25009559 ,Sp( 11999999990 *)≈ 25011585 , Δ≈ 0.00008101
G(11999999992) = 16116897 ,Sp( 11999999992 *)≈ 16116253.4 , Δ≈-0.00003993
G(11999999994) = 33332061 ,Sp( 11999999994 *)≈ 33342246.1 , Δ≈ 0.00030556
G(11999999996) = 16111161 ,Sp( 11999999996 *)≈ 16116370.6 , Δ≈ 0.00032335
|
|