|
本帖最后由 愚工688 于 2023-3-15 02:11 编辑
使用连乘式计算的以今天日期的10倍的连续偶数的素数对数量,精度怎么样呢?
Sp( 202303150 *)≈ 664099.6 , jdz =sp(m)/s(m) ≈
Sp( 202303152 *)≈ 817452.1 , jdz =sp(m)/s(m) ≈
Sp( 202303154 *)≈ 408726.1 , jdz =sp(m)/s(m) ≈
Sp( 202303156 *)≈ 457188 , jdz =sp(m)/s(m) ≈
Sp( 202303158 *)≈ 817452.1 , jdz =sp(m)/s(m) ≈
Sp( 202303160 *)≈ 544968.1 , jdz =sp(m)/s(m) ≈
Sp( 202303162 *)≈ 435974.5 , jdz =sp(m)/s(m) ≈
Sp( 202303164 *)≈ 980942.6 , jdz =sp(m)/s(m) ≈
Sp( 202303166 *)≈ 445883 , jdz =sp(m)/s(m) ≈
Sp( 202303168 *)≈ 410080.9 , jdz =sp(m)/s(m) ≈
start time =10:01:28,end time=10:01:39 ,time use =
实际计算值的精度如下:
G(202303150) = 663243 ;Sp( 202303150 *)≈ 664099.6 , jdz =sp(m)/s(m) ≈ 1.0013;
G(202303152) = 815899 ;Sp( 202303152 *)≈ 817452.1 , jdz =sp(m)/s(m) ≈ 1.0019;
G(202303154) = 408667 ;Sp( 202303154 *)≈ 408726.1 , jdz =sp(m)/s(m) ≈ 1.00014;
G(202303156) = 456677 ;Sp( 202303156 *)≈ 457188 , jdz =sp(m)/s(m) ≈ 1.00112;
G(202303158) = 816677 ;Sp( 202303158 *)≈ 817452.1 , jdz =sp(m)/s(m) ≈ 1.00095;
G(202303160) = 543849 ;Sp( 202303160 *)≈ 544968.1 , jdz =sp(m)/s(m) ≈ 1.00206;
G(202303162) = 435644 ;Sp( 202303162 *)≈ 435974.5 , jdz =sp(m)/s(m) ≈ 1.00076;
G(202303164) = 980588 ;Sp( 202303164 *)≈ 980942.6 , jdz =sp(m)/s(m) ≈ 1.00036;
G(202303166) = 446262 ;Sp( 202303166 *)≈ 445883 , jdz =sp(m)/s(m) ≈ 0.99915;
G(202303168) = 410338 ;Sp( 202303168 *)≈ 410080.9 , jdz =sp(m)/s(m) ≈ 0.99937;
start time =10:01:28,end time=10:01:39 ,time use =
|
|