数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\textbf{蠢疯顽瞎的数学为何那么烂?}\)

[复制链接]
 楼主| 发表于 2024-6-15 12:07 | 显示全部楼层
既然 \(N_{\infty}(\subset\mathbb{N})\) 的"最小元"是\(\infty\not\in\mathbb{N}\),那就是说\(N_{\infty}\)没有成员。
不是强人所难,而是强集论白痴所难。因为后者算不出 \(N_{\infty}=\varnothing\)
回复 支持 反对

使用道具 举报

发表于 2024-6-15 12:08 | 显示全部楼层
elim,你给定的单调集合列的通项为\(A_k=\{k+1,k+2,…\}\),根据极限集的定义有\(A_∞=\displaystyle\lim_{k→∞}\{k+1,k+2,…\}\),若\(A_∞=\displaystyle\lim_{k→∞}\{k+1,k+2,…\}=\phi\),则必然有n=\(\displaystyle\lim_{k→∞}k\)无后继,这与Peano公理矛盾.所以\(A_∞=\displaystyle\lim_{k→∞}\{k+1,k+2,…\}≠\phi\).从而\(N_∞=\displaystyle\bigcap_{k=1}^∞ A_k\)\(=\displaystyle\lim_{k→∞}\{k+1,k+2,…\}≠\phi\). 行文至此,应该说已回答清楚了【凭什么说所论极限集非空】了吧?至于【极限集是一个与亚变量n无关的恒常集合】这只是你的期盼和猜测,无论根据集合运算规律还是单调递减集合列极限集定义都证明不了【极限集是一个与亚变量n无关的恒常集合】这个命题。elim先生要我根据自然数集的良序性说出\(N_∞\)中一个确切的自然数以证明\(N_∞≠\phi\),不仅我办不到,就是发明朴素集合论的Cantor也办不到。因为\(N_∞\)中最小的自然数是\(n=\displaystyle\lim_{k→∞}(k+1)\).因为我们知道“凡能说岀(读出或写出)的数都是有限数”,所以你们要我举出一个属于\(N_∞\)的确切自然数以证明\(N_∞≠\phi\)确实是强人所难!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-15 12:22 | 显示全部楼层
既然 \(N_{\infty}(\subset\mathbb{N})\) 的"最小元"是\(\infty\not\in\mathbb{N}\),那就是说\(N_{\infty}\)没有成员。
集论白痴算不出 \(N_{\infty}=\varnothing\), 干啥都难
回复 支持 反对

使用道具 举报

发表于 2024-6-15 14:52 | 显示全部楼层
elim 发表于 2024-6-15 12:22
既然 \(N_{\infty}(\subset\mathbb{N})\) 的"最小元"是\(\infty\not\in\mathbb{N}\),那就是说\(N_{\infty}\ ...

elim,你的【既然 \(N_∞\)(\(\subset N\))的"最小元"是\(∞\notin N\),那就是说\(N_∞\)没有成员。集论白痴算不出\(N_∞=\phi\)干啥都难】这段叙述值得商榷。在现行教科书中∞称着变化趋势或集合。不管称∞为变化趋势还是集合表达式\(∞\notin N\)都是非法的。印度人编撰的《夜柔吠陀》一书(成书于公元前1200年-900年)说:“如果你从无限中移走或添加一部分,剩下的还是无限。”如果用今天的符号表示:∞+1=∞;∞+2=∞……∞+∞=∞(即2×∞=∞)都是合法的。由此我们再度证得\(\displaystyle\lim_{k→∞}(k+j)∈N_∞\)(j∈N),所以\(N_∞≠\phi\)!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-16 03:04 | 显示全部楼层
\(\displaystyle\lim_{k\to\infty}(k+j)\) 是什么蠢疯为什么不敢说啊? 是确定的自然数吗?
它是哪个自然数的后继?集论白痴?
回复 支持 反对

使用道具 举报

发表于 2024-6-16 09:25 | 显示全部楼层
elim 发表于 2024-6-16 03:04
\(\displaystyle\lim_{k\to\infty}(k+j)\) 是什么蠢疯为什么不敢说啊? 是确定的自然数吗?
它是哪个自然 ...

elim问,【\(\displaystyle\lim_{k\to\infty}(k+j)\) 是什么?蠢疯为什么不敢说啊? 是确定的自然数吗?它是哪个自然数的后继?集论白痴?】
答:\(\displaystyle\lim_{k\to\infty}(k+j)\) 是表示确定自然数的集合\(A_n\)中的元素,一旦j值取定它便表示确定的自然数。如\(\displaystyle\lim_{k\to\infty}(k+1)\) 、\(\displaystyle\lim_{k\to\infty}(k+2)\) 、\(\displaystyle\lim_{k\to\infty}(k+3)\) ……它们分别是自然数\(\displaystyle\lim_{k\to\infty}k\) 、自然数\(\displaystyle\lim_{k\to\infty}(k+1)\).自然数\(\displaystyle\lim_{k\to\infty}(k+2) \)……的后继!对于这个问题春风晚霞没有计么不敢说的!因为春风晚霞只是谈了对教科书极限集定义定义的深入理解。你们动辄就来个什么【极限集\(\displaystyle\lim_{n→∞}A_n\)\(=\displaystyle\bigcap_{n=1}^∞ A_n\)与哑变量n无关】别出心裁的说词。你们歪嘴和尚念歪经,什么东西都敢说,我又有什么不敢说?至于极限集\(H_∞≠\phi\)且其中的元素均为自然数请接合Cantor超穷数理论深入理解!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-17 05:21 | 显示全部楼层
蠢痴帮\(N_{\infty}\) 代孕因种太孬不成,现在又搞自然数假户口,
蠢痴的目的到底是啥?分享吃狗屎的乐趣还是竞选首席白痴?
回复 支持 反对

使用道具 举报

发表于 2024-6-17 05:45 | 显示全部楼层
elim 发表于 2024-6-17 05:21
蠢痴帮\(N_{\infty}\) 代孕因种太孬不成,现在又搞自然数假户口,
蠢痴的目的到底是啥?分享吃狗屎的乐趣 ...

〖〗中内容引自《算术公理系统之:超穷数理论》第五节.
〖自然数集是一个无穷集,又是一个良序集,对它进行一重抽象就得到一个序数,康托称为超穷序数,记作α。有了这第一个超穷序数,那么运用第一生成原则,不断加1不断生成新数:α,α+1,α+2,α+3,…得到一个无穷集,对这个无穷集运用第二生成原则取极限,得到一个极限数2α,进了一层,这又是一个集合的集合。接着运用第一生成原则:2α,2α+1,2α+2,2α+3,…又得到一个无穷集,对这个无穷集取极限,得到一个极限数3α,再进一层,这又是一个集合的集合。接着运用第一生成原则:
3α,3α+1,3α+2,3α+3,…就这样让它循环往复不断生成下去,而所有这些数汇集在一起,构成了第二数类的全体〗(注:第一生成原则即Peano公理)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-22 12:33 | 显示全部楼层
如果\(H_{\infty}\ne\varnothing\), 则有自然数\(m\in H_{\infty}=\displaystyle\bigcap_{n=1}^\infty A_n\subset A_m\) ,
只有孬种的才认为\(m\in A_m\). 所以\(H_{\infty}\ne\varnothing\)只能是孬种犯的孬。
回复 支持 反对

使用道具 举报

发表于 2024-6-23 05:27 | 显示全部楼层
elim 发表于 2024-6-22 12:33
如果\(H_{\infty}\ne\varnothing\), 则有自然数\(m\in H_{\infty}=\displaystyle\bigcap_{n=1}^\infty A_n\ ...


elin认为【如果\(H_∞≠\phi\) 则有自然\(m∈H_∞=\displaystyle\bigcap_{n=1}^∞ A_n\subset A_m\)
只有孬种的才认为\(m∈A_m\). 所以\(H_∞≠\phi\)只能是孬种犯的孬。】elim至今也没有明白他的【无穷交就是一种“臭便”】臭在哪里?事实上因为\(H_∞=\displaystyle\lim_{k→∞}\{k+1,k+2,…\}≠\phi\) ,若有自然数\(m∈H_∞=\displaystyle\bigcap_{n=1}^∞ A_n\),则必有\(H_∞\color{red}{\supset A_m}\)。(\(\color{red}{这时A_m是H_∞的真子集}\))所以m∈\(H_∞\),但\(m\notin A_m\)。elim自许自己精通集合论,为什么连子母集的关系都弄不清呢?同样是m∈\(H_∞\)但\(m\notin A_m\),为什么elim会演译岀\(H_∞=\phi\)呢?elim自己给出了很好的诠释,那就是【只有孬种的才认为\(m∈A_m\). 所以\(H_∞=\phi\)只能是孬种犯的孬。】
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-9-10 18:05 , Processed in 0.109976 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表