数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: qhdwwh

再次申明我证明了哥德巴赫猜想成立

  [复制链接]
 楼主| 发表于 2025-9-16 06:21 | 显示全部楼层
我用排列组合的相关数学式推导出偶数哥德巴赫分拆数下限数学表达式:G2(X)>0.5X/(lnX)^2,(X≥10),即偶数X的哥德巴赫分拆数必大于[3,X]区间内全部素数所构成的(按素数定理)偶数素数对的算术平均值,这个算术平均值函数是增函数,且>0,必有G2(X)>0.5X/(lnX)^2,(X≥10),(可证明)这证明偶数哥德巴赫分拆数有严格大于0的下限,偶数x可以趋于∞,以数学新思维证明了偶数哥猜成立。
   这个证明仅用到高中的数学知识,人们能够看懂。
   我原创了WHS筛法,用计算机技术和埃拉托斯特尼筛法可以筛出自然数中的素数,和这些素数的全部组合,且可标记在WHS图表中。可以在表示偶数值的每一行中,找到偶数的一个以上或全部哥猜解,证明﹑验证了偶数哥德巴赫猜想成立。
   用WHS筛法中的序数和法,可以一次证明三个连续偶数哥德巴赫猜想成立。
   WHS筛法,用1和0的代码表示素数和合数,用代码的位置匹配(数理逻辑乘法)来找到偶数素数对(哥猜解),因此用普通家用计算机就可以完成超级计算机的工作(大数据计算)。
   此前,我证明﹑验证过97位大偶数哥猜成立,一次验证量达到60万个连续偶数。我说过可以做充分大偶数哥猜成立的证明验证工作,这绝不是空话,大话,可以用实践来检验。
   本人五年制本科工科毕业,从事了40年的理论联系实际的技术和管理工作。我认为理论上能证明哥德巴赫猜想成立,又能有数学方法(工具)来正确,快速地证明任意偶数的哥德巴赫猜想成立才算是完美。WHS筛法做到了。
   科学技术如此发达的今天,只要人们想做,就没有做不到的事情,WHS筛法就是个例子。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-9-16 18:09 | 显示全部楼层
      用WHS筛法,将三分之一的自然数中的素数和合数按顺序排列构成二个数学模型图表(1表示是素数,0表示是合数),这些数学模型经过复制,二个图表共有三种排列组合图表形式,从中可以得到区间全部偶数的“哥猜解”。
     按哥德巴赫猜想的定义,找到偶数至少一个由二个素数之和构成的素数对,是容易做到的事.验证﹑证明了该偶数哥德巴赫猜想成立。
     世界数学界的研究成果,比如密码学研究的成果,人们得到了几千位数的素数组,那么可以证明﹑验证这么大的偶数哥德巴赫猜想成立。
     用WHS筛法,这样的过程可以无限进行下去,没有穷尽。人们相信算术四则运算法则,同样的理由,应该相信WHS筛法。WHS筛法适用全部偶数的哥猜证明﹑验证。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-9-17 06:47 | 显示全部楼层
   以逻辑推导得到的偶数哥德巴赫分拆数下限数学表达式:G2(X)>0.5X/(lnX)^2,(式中,X为≥10偶数),给出了偶数哥德巴赫分拆数严格大于0的下限数学式,以最简单的数学式证明了哥德巴赫猜想成立。
   这个数学表达式类同陈氏定理的数学表达式。但是,偶数哥德巴赫分拆数下限数学表达式:G2(X)>0.5X/(lnX)^2,---(1)(式中,X为≥10偶数),是哥德巴赫猜想“1+1”的数学表达式,和陈氏定理的数学表达式P,(1,2)≥0.67xCx/(logx)^2,---(2),即“1+2”含义完全不同,这明显可见,不用解释。
   既然是数学表达式,当然能够计算和验证,我在前文中给出过99个1000000附近偶数的哥德巴赫分拆数。实践证明,二个数学表达式都正确,但是G2(X)>0.5X/(lnX)^2---(1)的计算结果,优于陈氏定理P,(1,2)≥0.67xCx/(logx)^2---(2),的计算结果(经过计算分析对比)。说明陈氏定理推导过程趋于保守(推导过程有近似估计成分)。
   用WHS筛法可以再现每个偶数的哥德巴赫猜想构成,即人们已经认识到偶数都有确定的哥德巴赫分拆数。但是哥德巴赫猜想成立的证明涉及到无穷大,因此,没有数学式能给出答案的确定性,即数学—确定性丧失。我们可以找到一个数学方法WHS筛法,用哥德巴赫猜想的定义来证明﹑验证确定偶数的哥德巴赫猜想成立。
   我在上文提到:这样我们只用RSA-640的97位921个素数,就能证明验证比PN921大[1,10^23-N]区间的任何偶数哥德巴赫猜想成立,这里N=200000。这已经是比PN921最大素数大近1000万亿亿的偶数了。
   如果中科院,数学研究部门用疑问,我可以用实践证明所言不虚。你们可以在网上给出比Pn921大m的偶数A,和[m,m+200000]区间的全部素数(如m=10^23,素数约3800个),我用WHS筛法中的序数和法,给出Pn921大的偶数A(含与A相邻的,共3个偶数)的哥猜解。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-9-17 18:18 | 显示全部楼层
      用WHS筛法可以再现偶数的哥德巴赫猜想构成。
      哥德巴赫猜想成立的证明涉及到无穷大。无穷大是一个抽象数学概念,因此,没有数学式能给出哥德巴赫猜想成立确定性(对≥4的任何偶数哥德巴赫猜想成立的确定值),即数学—确定性丧失(用等号表示的数量),但是用其它数学符号如>表示,数学—确定性是存在的。偶数哥德巴赫分拆数下限数学表达式:G2(X)>0.5X/(lnX)^2,就是数学—确定性存在的 例子。
      我原创的WHS筛法,用哥德巴赫猜想的定义来证明﹑验证哥德巴赫猜想成立。
      WHS筛法能够给出自然数中素数集合,也能将素数和相关合数按顺序排列,将若干二个素数组合的偶数按顺序排列在图表上。因此,哥德巴赫猜想成立就是客观存在。
      WHS筛法能够将看似没有规律的素数,按规则排列,也能将偶数的哥猜构成按规则排列,即将无规律的事,用数学方法(符合数理逻辑的数学模型)转化,按有规律的事处理。这是以前研究哥德巴赫猜想的人们没有想到,更提不到去做的事。
      我在大学毕业工作十余年后,通过自己的所做﹑所见﹑所闻,特别是人类登月,认识到现代科学技术的发展,已经没有人们想做而做不到的事。
      证明哥德巴赫猜想成立就是一件这样的事情。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-9-18 09:37 | 显示全部楼层
      WHS筛法能够将看似没有规律的素数,按规则排列,也能将偶数的哥猜构成按规则排列,即将无规律的事,用数学方法转化,按有规律的事处理。
      这样我们证明﹑验证任何大偶数哥德巴赫猜想成立就变得容易,比如我们要验证﹑证明偶数X哥猜成立,如果要找到哥猜成立的全部答案,即偶数X的哥德巴赫分拆数,用WHS筛法,表格行高按6mm,那么表格总长达到Xmm。
      按中科院的提法;研究哥德巴赫猜想要考虑充分大,这个充分大是10的1000多次方,那么验证﹑证明偶数X哥猜成立,表格总长达到Xmm,即L≥10^1000mm,这个长度是个无法想象的数字,如果以光速浏览这个表格,则需T>10^1000/300000000000/3600/24/365=1.06e+981 光年,这还不是无穷大,却已经是人类无法做到的事。
      按哥德巴赫猜想的定义,只要找到一组素数对,哥猜即成立,用WHS筛法能够做到。这个结论可以以抽象思维想到(数学家的想象),也可以用WHS筛法直观做到。我在前面的发文,发表过99个100万连续偶数的哥德巴赫分拆数,每个偶数的表格长度达1000米,99个偶数表格长度达99公里长。这样的事100年前是无法想象的,现在用计算机能轻松做到。
      我用科学研究的三个方法:1逻辑化2定量化3实证化都证明了哥德巴赫猜想成立。
      1逻辑化:逻辑推导偶数哥德巴赫分拆数下限数学表达式:G2(X)>0.5X/(lnX)^2。给出了偶数哥德巴赫分拆数严格大于0的下限,以数学新思维证明了偶数哥猜成立。
      2定量化:用WHS筛法给出偶数的哥德巴赫分拆数,偶数表示为二个素数之和的全部数量。
      3实证化:给出偶数至少一个由二个素数之和的构成实例。上面提到充分大的偶数10的1000多次方的数,用定量化方法人类无法做到,但是用实证化方法确容易做到。即使这么大到无法想象的偶数也能实证哥德巴赫猜想成立。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-9-19 08:12 , Processed in 0.101258 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表