|
比如10万起始的连续偶数的素数对情况:
S2——方根以内素数对个数; S1——方根以外素数对个数;
能够看到【方根以内素数对的个数】的波动性增长吗?显然不能!
方根以内素数对的个数的波动性是能够看出的。
M= 100002 ,S(m)= 1423 ( s1= 1405 ,s2= 18 ), Sp(m)≈ 1477 ,δ(m)≈ .038 ,δ1(m)≈ .051
M= 100004 ,S(m)= 627 ( s1= 618 ,s2= 9 ), Sp(m)≈ 645 ,δ(m)≈ .029 ,δ1(m)≈ .044
M= 100006 ,S(m)= 630 ( s1= 622 ,s2= 8 ), Sp(m)≈ 637 ,δ(m)≈ .011 ,δ1(m)≈ .024
M= 100008 ,S(m)= 1209 ( s1= 1193 ,s2= 16 ), Sp(m)≈ 1231 ,δ(m)≈ .018 ,δ1(m)≈ .032
M= 100010 ,S(m)= 831 ( s1= 821 ,s2= 10 ), Sp(m)≈ 838 ,δ(m)≈ .008 ,δ1(m)≈ .021
M= 100012 ,S(m)= 681 ( s1= 672 ,s2= 9 ), Sp(m)≈ 684 ,δ(m)≈ .004 ,δ1(m)≈ .018
M= 100014 ,S(m)= 1235 ( s1= 1221 ,s2= 14 ), Sp(m)≈ 1253 ,δ(m)≈ .015 ,δ1(m)≈ .026
M= 100016 ,S(m)= 772 ( s1= 762 ,s2= 10 ), Sp(m)≈ 799 ,δ(m)≈ .035 ,δ1(m)≈ .049
M= 100018 ,S(m)= 635 ( s1= 627 ,s2= 8 ), Sp(m)≈ 630 ,δ(m)≈-.008 ,δ1(m)≈ .005
M= 100020 ,S(m)= 1602 ( s1= 1585 ,s2= 17 ), Sp(m)≈ 1641 ,δ(m)≈ .024 ,δ1(m)≈ .035
M= 100022 ,S(m)= 674 ( s1= 664 ,s2= 10 ), Sp(m)≈ 671 ,δ(m)≈-.004 ,δ1(m)≈ .011
M= 100024 ,S(m)= 599 ( s1= 592 ,s2= 7 ), Sp(m)≈ 615 ,δ(m)≈ .027 ,δ1(m)≈ .039
M= 100026 ,S(m)= 1232 ( s1= 1218 ,s2= 14 ), Sp(m)≈ 1231 ,δ(m)≈-.001 ,δ1(m)≈ .011
M= 100028 ,S(m)= 627 ( s1= 618 ,s2= 9 ), Sp(m)≈ 656 ,δ(m)≈ .046 ,δ1(m)≈ .061
M= 100030 ,S(m)= 972 ( s1= 961 ,s2= 11 ), Sp(m)≈ 985 ,δ(m)≈ .013 ,δ1(m)≈ .025
M= 100032 ,S(m)= 1212 ( s1= 1194 ,s2= 18 ), Sp(m)≈ 1231 ,δ(m)≈ .016 ,δ1(m)≈ .031
M= 100034 ,S(m)= 670 ( s1= 661 ,s2= 9 ), Sp(m)≈ 684 ,δ(m)≈ .021 ,δ1(m)≈ .035
M= 100036 ,S(m)= 594 ( s1= 587 ,s2= 7 ), Sp(m)≈ 625 ,δ(m)≈ .052 ,δ1(m)≈ .065
M= 100038 ,S(m)= 1191 ( s1= 1177 ,s2= 14 ), Sp(m)≈ 1231 ,δ(m)≈ .034 ,δ1(m)≈ .046
M= 100040 ,S(m)= 815 ( s1= 807 ,s2= 8 ), Sp(m)≈ 856 ,δ(m)≈ .05 ,δ1(m)≈ .061
M= 100042 ,S(m)= 604 ( s1= 598 ,s2= 6 ), Sp(m)≈ 616 ,δ(m)≈ .02 ,δ1(m)≈ .03
M= 100044 ,S(m)= 1475 ( s1= 1460 ,s2= 15 ), Sp(m)≈ 1477 ,δ(m)≈ .001 ,δ1(m)≈ .012
M= 100046 ,S(m)= 614 ( s1= 608 ,s2= 6 ), Sp(m)≈ 616 ,δ(m)≈ .003 ,δ1(m)≈ .013
M= 100048 ,S(m)= 658 ( s1= 652 ,s2= 6 ), Sp(m)≈ 691 ,δ(m)≈ .05 ,δ1(m)≈ .06
M= 100050 ,S(m)= 1724 ( s1= 1705 ,s2= 19 ), Sp(m)≈ 1783 ,δ(m)≈ .034 ,δ1(m)≈ .046
M= 100052 ,S(m)= 612 ( s1= 605 ,s2= 7 ), Sp(m)≈ 616 ,δ(m)≈ .007 ,δ1(m)≈ .018
M= 100054 ,S(m)= 626 ( s1= 620 ,s2= 6 ), Sp(m)≈ 652 ,δ(m)≈ .042 ,δ1(m)≈ .052
M= 100056 ,S(m)= 1352 ( s1= 1337 ,s2= 15 ), Sp(m)≈ 1368 ,δ(m)≈ .012 ,δ1(m)≈ .023
M= 100058 ,S(m)= 722 ( s1= 713 ,s2= 9 ), Sp(m)≈ 739 ,δ(m)≈ .024 ,δ1(m)≈ .036
M= 100060 ,S(m)= 794 ( s1= 782 ,s2= 12 ), Sp(m)≈ 821 ,δ(m)≈ .034 ,δ1(m)≈ .05
M= 100062 ,S(m)= 1268 ( s1= 1252 ,s2= 16 ), Sp(m)≈ 1326 ,δ(m)≈ .046 ,δ1(m)≈ .059
M= 100064 ,S(m)= 634 ( s1= 624 ,s2= 10 ), Sp(m)≈ 639 ,δ(m)≈ .008 ,δ1(m)≈ .024
M= 100066 ,S(m)= 590 ( s1= 583 ,s2= 7 ), Sp(m)≈ 616 ,δ(m)≈ .044 ,δ1(m)≈ .057
M= 100068 ,S(m)= 1249 ( s1= 1235 ,s2= 14 ), Sp(m)≈ 1279 ,δ(m)≈ .024 ,δ1(m)≈ .036
M= 100070 ,S(m)= 806 ( s1= 795 ,s2= 11 ), Sp(m)≈ 821 ,δ(m)≈ .019 ,δ1(m)≈ .033
M= 100072 ,S(m)= 712 ( s1= 700 ,s2= 12 ), Sp(m)≈ 739 ,δ(m)≈ .038 ,δ1(m)≈ .056
M= 100074 ,S(m)= 1341 ( s1= 1323 ,s2= 18 ), Sp(m)≈ 1343 ,δ(m)≈ .001 ,δ1(m)≈ .015
M= 100076 ,S(m)= 617 ( s1= 612 ,s2= 5 ), Sp(m)≈ 624 ,δ(m)≈ .011 ,δ1(m)≈ .02
M= 100078 ,S(m)= 691 ( s1= 682 ,s2= 9 ), Sp(m)≈ 684 ,δ(m)≈-.01 ,δ1(m)≈ .003
M= 100080 ,S(m)= 1613 ( s1= 1594 ,s2= 19 ), Sp(m)≈ 1654 ,δ(m)≈ .025 ,δ1(m)≈ .038
M= 100082 ,S(m)= 606 ( s1= 601 ,s2= 5 ), Sp(m)≈ 622 ,δ(m)≈ .026 ,δ1(m)≈ .035
M= 100084 ,S(m)= 606 ( s1= 603 ,s2= 3 ), Sp(m)≈ 624 ,δ(m)≈ .03 ,δ1(m)≈ .035
M= 100086 ,S(m)= 1471 ( s1= 1455 ,s2= 16 ), Sp(m)≈ 1478 ,δ(m)≈ .005 ,δ1(m)≈ .016
M= 100088 ,S(m)= 608 ( s1= 600 ,s2= 8 ), Sp(m)≈ 616 ,δ(m)≈ .013 ,δ1(m)≈ .027
M= 100090 ,S(m)= 797 ( s1= 789 ,s2= 8 ), Sp(m)≈ 821 ,δ(m)≈ .03 ,δ1(m)≈ .041
M= 100092 ,S(m)= 1293 ( s1= 1279 ,s2= 14 ), Sp(m)≈ 1304 ,δ(m)≈ .009 ,δ1(m)≈ .02
M= 100094 ,S(m)= 570 ( s1= 563 ,s2= 7 ), Sp(m)≈ 616 ,δ(m)≈ .081 ,δ1(m)≈ .094
M= 100096 ,S(m)= 678 ( s1= 671 ,s2= 7 ), Sp(m)≈ 688 ,δ(m)≈ .015 ,δ1(m)≈ .025
M= 100098 ,S(m)= 1248 ( s1= 1234 ,s2= 14 ), Sp(m)≈ 1266 ,δ(m)≈ .014 ,δ1(m)≈ .026
M= 100100 ,S(m)= 1152 ( s1= 1137 ,s2= 15 ), Sp(m)≈ 1194 ,δ(m)≈ .036 ,δ1(m)≈ .05
|
|