数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\color{red}{\textbf{人工智能已经胜出孬种蠢疯顽瞎}}\)

[复制链接]
发表于 2025-4-19 04:42 | 显示全部楼层

因为\(\mathbb{N}\)可列集,所以把\(\mathbb{N}\)的所有元素按序号递增的方式排成一列1,2,…,\(v-k\),…,\(v-2\),\(v-1\),\(v\)(其中\(v-j=\displaystyle\lim_{n \to \infty} (n-j)\)(j∈\(\mathbb{N}\))所以,\(\mathbb{N}=\{1,2,…(v-k),…v-2,v-1,v\}\)。elim根据\(\mathbb{N}\)中无最大元认为\(v\notin\mathbb{N}\):集列\(\{1,2,…(v-k),…v-2,v-1,v\}\)\(=\mathbb{N}\cup\{v\}\)。春风晚霞认为elim的\(v\notin\mathbb{N}\)是错误的。理由如下:①\(v\)是自然数集所有成员中的一员,它理应属于\(\mathbb{N}\);②elim依据\(\mathbb{N}\)中无最大元,认为集列\(\{1,2,…(v-k),…v-2,v-1,v\}=\)\(\mathbb{N}\cup\{v\}\))。那么\(\mathbb{N}=\{1,2,…,v-2,v-1\}\),那么\(v-1\)岂不又成了\(\mathbb{N}\)中的最大元,是不是又要\(v-1\)排除在\(\mathbb{N}\)之外?这种排出最大序号的方法最终将得到\(\mathbb{N}=\phi\)。③elim错把\(v=\displaystyle\lim_{n \to \infty} n\)当作ω。elim\(v\)既表示把一个个单位加起来的确切计数,又表示它们汇集成的整体,其中值为\(\aleph_0\)。它有前趋而无后继。ω是设想的一个表示(I)的整体和(I)中数之间的相继次序,它无前趋而有后继。所以elim坚持认为\(v=\displaystyle\lim_{n \to \infty} n\)不是自然数的认知是错误的!
回复 支持 反对

使用道具 举报

发表于 2025-4-19 09:38 | 显示全部楼层

       elim,皮亚诺公理决定了\(v=\displaystyle\lim_{n \to \infty}x_n\)是自然数,你提供的论据皆不成立。理由如下:
       1)\(v=\displaystyle\lim_{n \to \infty} n\)不是\(\{n\}\)的最终元,因在\(v=\displaystyle\lim_{n \to \infty} n\)后边不有自然数\(v+k=\displaystyle\lim_{n \to \infty} (n+k)\)(\(k\in\mathbb{N}\))。
       2)若\(v=\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
       3)极限序数非自然数没有任何依据,或说该命题尚待证明不能作为证据!
       综上\(v=\displaystyle\lim_{n \to \infty} n\)是自然数!
回复 支持 反对

使用道具 举报

发表于 2025-4-19 10:55 | 显示全部楼层

       elim,皮亚诺公理决定了\(v=\displaystyle\lim_{n \to \infty}x_n\)是自然数,你提供的论据皆不成立。理由如下:
       1)\(v=\displaystyle\lim_{n \to \infty} n\)不是\(\{n\}\)的最终元,因在\(v=\displaystyle\lim_{n \to \infty} n\)后边还有自然数\(v+k=\displaystyle\lim_{n \to \infty} (n+k)\)(\(k\in\mathbb{N}\))。
       2)若\(v=\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
       3)极限序数非自然数没有任何依据只是你的猜测,所以不能作为证据!
       综上\(v=\displaystyle\lim_{n \to \infty} n\)是自然数!
回复 支持 反对

使用道具 举报

发表于 2025-4-19 11:07 | 显示全部楼层

       elim,皮亚诺公理决定了\(v=\displaystyle\lim_{n \to \infty}x_n\)是自然数,你提供的论据皆不成立。理由如下:
       1)\(v=\displaystyle\lim_{n \to \infty} n\)不是\(\{n\}\)的最终元,因在\(v=\displaystyle\lim_{n \to \infty} n\)后边还有自然数\(v+k=\displaystyle\lim_{n \to \infty} (n+k)\)(\(k\in\mathbb{N}\))。
       2)若\(v=\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
       3)极限序数非自然数没有任何依据只是你的猜测,所以不能作为证据!
       综上\(v=\displaystyle\lim_{n \to \infty} n\)是自然数!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-19 11:08 | 显示全部楼层
\(\small n< n^+\)故排列\(\small\{n\}\)无最终元, 因\(v\small=\displaystyle\lim_{n\to\infty}n\)
大于各自然数故而非自然数(首个极限序数)
故\(v\not\in\small\mathbb{N}\subsetneq\small\{0,1,2,\ldots,\displaystyle\lim_{n\to\infty}n\}=\mathbb{N}\cup\{v\}\)
蠢疯白痴身份被坐实, 孬贼船漏不打一处来
回复 支持 反对

使用道具 举报

发表于 2025-4-19 11:23 | 显示全部楼层

       elim,皮亚诺公理决定了\(v=\displaystyle\lim_{n \to \infty}x_n\)是自然数,你提供的论据皆不成立。理由如下:
       1)\(v=\displaystyle\lim_{n \to \infty} n\)不是\(\{n\}\)的最终元,因在\(v=\displaystyle\lim_{n \to \infty} n\)后边还有自然数\(v+k=\displaystyle\lim_{n \to \infty} (n+k)\)(\(k\in\mathbb{N}\))。
       2)若\(v=\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
       3)极限序数非自然数没有任何依据只是你的猜测,所以不能作为证据!
       综上\(v=\displaystyle\lim_{n \to \infty} n\)是自然数!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-19 11:23 | 显示全部楼层
皮亚诺公理决定了\(\displaystyle\lim_{n\to\infty}n\not\in\mathbb{N}\):
\(\small n< n^+\)故排列\(\small\{n\}\)无最终元, 因\(v\small=\displaystyle\lim_{n\to\infty}n\)
大于各自然数故而非自然数(首个极限序数)
故\(v\not\in\small\mathbb{N}\subsetneq\small\{0,1,2,\ldots,\displaystyle\lim_{n\to\infty}n\}=\mathbb{N}\cup\{v\}\)
蠢疯白痴身份被坐实, 孬贼船漏不打一处来
回复 支持 反对

使用道具 举报

发表于 2025-4-19 11:25 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-4-19 11:33 编辑


       elim,皮亚诺公理决定了\(v=\displaystyle\lim_{n \to \infty}x_n\)是自然数,你提供的论据皆不成立。理由如下:
       1)\(v=\displaystyle\lim_{n \to \infty} n\)不是\(\{n\}\)的最终元,因在\(v=\displaystyle\lim_{n \to \infty} n\)后边还有自然数\(v+k=\displaystyle\lim_{n \to \infty} (n+k)\)(\(k\in\mathbb{N}\))。
       2)若\(v=\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
       3)极限序数非自然数没有任何依据只是你的猜测,所以不能作为证据!
       综上\(v=\displaystyle\lim_{n \to \infty} n\)是自然数!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-19 11:25 | 显示全部楼层
皮亚诺公理决定了\(\displaystyle\lim_{n\to\infty}n\not\in\mathbb{N}\):
\(\small n< n^+\)故排列\(\small\{n\}\)无最终元, 因\(v\small=\displaystyle\lim_{n\to\infty}n\)
大于各自然数故而非自然数(首个极限序数)
故\(v\not\in\small\mathbb{N}\subsetneq\small\{0,1,2,\ldots,\displaystyle\lim_{n\to\infty}n\}=\mathbb{N}\cup\{v\}\)
蠢疯白痴身份被坐实, 孬贼船漏不打一处来
回复 支持 反对

使用道具 举报

发表于 2025-4-19 11:33 | 显示全部楼层

       elim,皮亚诺公理决定了\(v=\displaystyle\lim_{n \to \infty}x_n\)是自然数,你提供的论据皆不成立。理由如下:
       1)\(v=\displaystyle\lim_{n \to \infty} n\)不是\(\{n\}\)的最终元,因在\(v=\displaystyle\lim_{n \to \infty} n\)后边还有自然数\(v+k=\displaystyle\lim_{n \to \infty} (n+k)\)(\(k\in\mathbb{N}\))。
       2)若\(v=\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
       3)极限序数非自然数没有任何依据只是你的猜测,所以不能作为证据!
       综上\(v=\displaystyle\lim_{n \to \infty} n\)是自然数!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-9 16:12 , Processed in 0.098021 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表