数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\star\textbf{ 滚驴}\color{red}{\textbf{无穷大自然数}}\textbf{泡汤}\)

[复制链接]
发表于 2025-8-6 21:59 | 显示全部楼层

       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-8-7 04:25 | 显示全部楼层

       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-8-7 08:33 | 显示全部楼层

        elim于 2025-8-7 05:03再次贴出他反人类数学的宿帖,以证明他的【无穷交就是一种骤变】的正确性,从百间接地“证明”\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)。现对其全文评析于后:
【原文】
        \(\mathbb{N}_{\infty}=\)\(\displaystyle\bigcap_{n=1}^{\infty}A_n\)\((A_k=\{m\in\mathbb{N}:m>k\}(k\in\mathbb{N})\)是\(\mathbb {N}\)的子集①.对任意的\(m\in\mathbb{N}\)易见\(m\notin\mathbb{N}\)②所以m不是\(A_1\),……,\(A_m\),\(A_{m+1}\),……的公共元,即不是\(\mathbb{N}_{\infty}=\)\(\displaystyle\bigcap_{n=1}^{\infty}A_n\)的元③.所以\(\boxed{\mathbb{N}_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n=\phi}\).
顽瞎目测再度泡汤:\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}=\)\(\{\displaystyle\lim_{n \to \infty}n+1,\displaystyle\lim_{n \to \infty}n+2,…\}\)与降列极限定义相悖④,因\(lim n\)非自然数显为荒谬.(原文中序号为春风晚霞评述方便所加).
\(\color{red}{【评述】}\)
        ①、对于求单调集列\((A_k=\{m[in\mathbb{N}:m>k\}(k\in\mathbb{N})\)的问题,任何时候都有\(\displaystyle\bigcap_{n=1}^{\infty}A_n\subset\Omega\),式中\(\Omega\)=\(\displaystyle\bigcup_{n =1}^{\infty}A_n^c\)\(\bigcup\)\(\displaystyle\bigcap_{n=1}^{ \infty}A_n\),所以(\mathbb{N}_{\infty}\)非\(\mathbb{N}\)的子集!
        ②、虽然【对任意的\(m\in\mathbb{N}\)易见\(m\notin\mathbb{N}\)】,但对elim【\(m\in\mathbb{N}\)】都有\((m+j)\in\Omega\),如\(10\notin A_{10}\)但,11,12,…都属于\(A_{10}\)。所以elim【逐点排查】挂一漏万!
        ③虽然【m不是\(A_1\),……,\(A_m\),\(A_{m+1}\),……的公共元】,但是\(\displaystyle\lim_{n \to \infty}n\),\(\displaystyle\lim_{n \to \infty}(n+1)\),…是\(A_1\),……,\(A_m\),\(A_{m+1}\),……的公共元!所以\(\boxed{\mathbb{N}_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n\ne\phi}\)!.
        ④、因为单调集列\(A_k=\{m\in\mathbb{N}:m>k\}(k\in\mathbb{N}=\)\(\{k+1,K+2,…\}\)单调递减,根据单减集列极限集的定义有\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcap_{k=1}^{\infty}A_k\)\(=\displaystyle\lim_{n \to \infty}\{(n+1),(n+2),…\}\ne\phi\)!所以【与降列极限定义相悖】的是elim的【\(\boxed{\mathbb{N}_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n=\phi}\)】,故此泡汤的是elim的“臭便”之法而不是春风晚霞的目测法!

回复 支持 反对

使用道具 举报

发表于 2025-8-7 09:36 | 显示全部楼层

        【原文】【定理】自然数皆有限数.
        \(\color{red}{【评析】}\)
        elim的定理【【定理】自然数皆有限数】命题为假,改成:【有限自然数皆自然数】方为真命题。
        【原文】【证明】记\(\alpha\)为最小无穷序数,则它之前的都是有限序数.因\(\alpha\)不是有限序数的后继,故其不是任何序数的后继即\(\alpha\)不是自然数,但序数链\(\mathbb{N}\)不含非自然数, 故\(\alpha\)后面无自然数. 即\(\mathbb{N}\)是\(\alpha\)的前段可见自然数皆有限数.
        \(\color{red}{【评析】}\)
        elim关于定理的证明与《集合论》中有限自然数的定义仿真度极高。只是把自然数截段概念中\(\{x:x\in\mathbb{N}且x\le n\}\)其本一致,所不同的只是把\(\{x:x\in\mathbb{N}且x\le n\}\)中的n换成\(\alpha\),忽略\(\alpha\in\mathbb{N}\)这个条件。其余与有限集的定义雷同。(参见方嘉琳《集合论》P82页定义3)。所以elim先生用有限集的定义来证明自然数皆有限数是循环论证。
        【原文】【推论1】\(\alpha=\omega \)(1st极限序数)
        \(\color{red}{【评析】}\)
        由\(\alpha=\omega \)反推证明伊始的【记\(\alpha\)为最小无穷序数】,可以看出elim是在玩借尸还魂的把戏。从康托尔有穷基数的无穷序列1,2,…,\(\nu(=\displaystyle\lim_{n \to \infty}n\),\(\alpha\),……看,\(\displaystyle\lim_{n \to \infty}n\)是属于\(\mathbb{N}\)的。所以elim是想通过他的循环论证,野蛮地把\(\displaystyle\lim_{n \to \infty}n\)逐出自然数集\(\mathbb{N}\)
        【原文】【推论2】\(\displaystyle\lim_{n \to \infty}n\)不是自然数.
         \(\color{red}{【评析】}\)
        由有限自然数的定义,推导不出【\(\displaystyle\lim_{n \to \infty}n\)不是自然数.】
        【原文】自然数完全由皮亚诺公理确定. 而极限, 无穷(及有穷有限)这些概念却不能由皮亚诺公理导出. 但从数学基础的视角看, 康托的序数概念逻辑上是先于自然数概念的\(\mathbb{N}\)是满足皮亚诺公理的序数全体). 小于最小无穷序数, \(\alpha\)的序数是有限序数. 从这些认识得出\(\mathbb{N}\)是\(\alpha\)的前段 的猜想. 而本定理就是被论证后的这一猜想的直接推论..
        \(\color{red}{【评析】}\)
        你既然知道【自然数完全由皮亚诺公理确定】、【康托的序数概念逻辑上是先于自然数概念的】那你为什么还把用皮亚诺公理或康托尔实正整数理论证明\(\displaystyle\lim_{n \to \infty}n\)是自然数的方法诬陷为目测法?你那个“底层逻辑”倒是不用目测方法,得出的结论对吗?
回复 支持 反对

使用道具 举报

发表于 2025-8-7 11:40 | 显示全部楼层

         陶哲轩证否【自然数皆有限数】.参见陶哲轩《陶哲轩实分析》P58页定理3.6.12及证明。
        【定理3.6.12】自然数集N 是无限集
        【证明】为了推出矛盾,我们假设自然数集N是有限集,于是它的基数是某个自然数\(\Re\lgroup N\rgroup=n\)。因此存在从\(\{i\in N:1\le i\le n\}\)到N的一个双射\(f\),我们能够证明序列\(f(1)\),\(f(2)\),…\(f(n)\)是有限的。或更准确的说,存在一个自然数M使得\(f(i)\le M\)对序列的有地\(1\le i\le n\)均成立。但自然数M+1对任一个\(f(i)\)都不相等。这与\(f\)是一个双射的假设矛盾。所以定理3.6.12成立。\(\Box\)
        从【自然数M+1对任一个\(f(i)\)都不相等】知【自然数皆有限数】是一个伪命题!

回复 支持 反对

使用道具 举报

发表于 2025-8-9 04:46 | 显示全部楼层

elim好了不起哟,既精通集合论,又精通自然数理论!就是不知道什么是无穷?什么叫趋向无穷?什么是无穷数?什么是超穷数?就是不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!就是不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!就是不知道你的“臭便”之法挂一个漏万的荒谬性。像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?其实你对自然数的认知不如小学四年级的学生,绿对集合论的认识当然不及高中一年级的学生了。像你这样什么都不知道的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出耒显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-8-9 15:09 | 显示全部楼层

elim好了不起哟,既精通集合论,又精通自然数理论!就是不知道什么是无穷?什么叫趋向无穷?什么是无穷数?什么是超穷数?就是不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!就是不知道单调集列极限集的定义的自洽性(即与交并运算规律的兼容性)!就是不知道你的“臭便”之法挂一个漏万的荒谬性。像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?其实你对自然数的认知不如小学四年级的学生,你对集合论的认识当然不及高中一年级的学生了。像你这样什么都不知道的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-8-9 16:14 | 显示全部楼层

定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-8-9 21:19 | 显示全部楼层

【原文】
        无论春风晚霞如何伪证\(v=\displaystyle\lim_{n \to \infty}n\)为自然数, 只要声称 \(a_v=\tfrac{10^v-1}{10^v}=1\),对自然数\(m=10^v-1\)就有\(m=10^v-1=10^v=\)\((10^v-1)+1=m\)\(+1\),①自然数m等于其后继, 反皮亚诺公理(第3,4条).②春风晚霞因无视\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)与皮亚诺公理的不相容且拒绝他人纠错而获得蠢疯顽瞎称号.  其无理据反数学认定被统称为顽瞎目测.③
        春氏可达 \(\displaystyle\lim_{n \to \infty}a_n=a_v\)代表了春风先生已达到的愚蠢, 也被风趣地叫作蠢可达.④
〖评析〗
        ①、因为\(v=\displaystyle\lim_{n \to \infty}n\),所以\(a_v=\tfrac{10^v-1}{10^v}=\)\(1-\tfrac{1}{10^v}\)=1-\(\displaystyle\lim_{n \to \infty}\tfrac{1}{10^n}=\)\(1-\displaystyle\lim_{n \to \infty}\tfrac{0}{10^n-1}=1\)(施笃兹定理)。【对自然数\(m=10^v-1\)就有\(m=10^v-1\)\(=10^v=\)\((10^v-1)+1=m+1\)】这只是elim对自然数理论的栽脏和诋毁。
        ②\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)是根据皮亚诺公理第二条:〖每个确定的自然数\(a\)都有确定的后继\(a’=a+1\),\(a’\)也是自然数〗从1逐次加1,推导出来的。皮亚诺公理第二条保证了\(v=\displaystyle\lim_{n \to \infty}n\)的无限性;第三条保证了\(v=\displaystyle\lim_{n \to \infty}n\)的唯一性;第四条保证了\(v=\displaystyle\lim_{n \to \infty}n\)的存在性。所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)并不违反皮亚诺公理。
        ③、由于\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)与皮亚诺公理完全兼容,并且单调集列极限集的定义也与自然数理论完全兼容。而不兼容的倒是你的【无穷交就是一种骤变】。因为现行数学是康托尔等人建立和完善的。所以春风晚霞拒绝扛着康托尔旗帜反康托尔的将正确的东西纠成错误东西。再说你和戴康威相比,你elim算个什么东西?
        ④、春风晚霞的〖只要极限存在,就一定可达〗,其数学表达式为:\(\displaystyle\lim_{\color{red}{n→∞}}\color{blue}{a_n=a}\Longleftrightarrow\color{blue}{a_n=a}(\color{red}{n→∞})\),所以elim的 \(\displaystyle\lim_{n \to \infty}a_n=a_v\)是elin对春氏可达的栽脏和诋毁。
回复 支持 反对

使用道具 举报

发表于 2025-8-9 21:34 | 显示全部楼层

定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 19:21 , Processed in 0.107250 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表