|
本帖最后由 愚工688 于 2022-8-30 16:44 编辑
回复杨:(哥猜数除以波动因子后仍然具有相当大的波动性,只是波动幅度小了许多。)
实际上对于比较大的连续偶数的素对数量的素对真值(哥猜数)来说,把哥猜数除以波动因子并不恰当,因为哥猜数是真值,是检验我们计算数据的基准。
偶数M的素对真值S(m),有
S(m)=S1(m)+S2(m)
其中的S1(m)是可计算的,就是通常人们使用的连乘式的计算的一类方法;
而偶数素对总数的S2(m)部分是不可计算的,就是素对的小素数≤√M的情况。
例如在1万——2万之间,就有一些偶数的S2(m)=0的情况:
M= 10268 S(m)= 98 S1(m)= 98
M= 10622 S(m)= 95 S1(m)= 95
M= 11438 S(m)= 133 S1(m)= 133
M= 11642 S(m)= 105 S1(m)= 105
M= 12886 S(m)= 131 S1(m)= 131
M= 13148 S(m)= 126 S1(m)= 126
M= 13562 S(m)= 109 S1(m)= 109
M= 14198 S(m)= 121 S1(m)= 121
M= 14678 S(m)= 122 S1(m)= 122
M= 16502 S(m)= 147 S1(m)= 147
M= 18908 S(m)= 161 S1(m)= 161
因此把连乘式计算值除以波动系数,即消去了计算值波动因素后,可以看做是一个小区域的素对下限,可以发现:
1,连续偶数的下界计算值,infS(m)是线性单调增大的,并且与区域素对的谷底值接近;
2,连乘式计算值的相对误差的波动很小;
区域下界计算值 infS(m)=inf(M)/k(m)
G(20200208000) = 43845338;
inf( 20200208000 )≈ 43827264.6 , Δ≈-0.0004122,infS(m) = 25874203.98 , k(m)= 1.69386
G(20200208002) = 28293784;
inf( 20200208002 )≈ 28275766.7 , Δ≈-0.0006368,infS(m) = 25874203.99 , k(m)= 1.09282
G(20200208004) = 51780662;
inf( 20200208004 )≈ 51748408 , Δ≈-0.0006229,infS(m) = 25874203.99 , k(m)= 2
G(20200208006) = 28781135;
inf( 20200208006 )≈ 28768475.2 , Δ≈-0.0004399,infS(m) = 25874203.99 , k(m)= 1.11186
G(20200208008) = 25894836;
inf( 20200208008 )≈ 25874204 , Δ≈-0.0007968,infS(m) = 25874203.99 , k(m)= 1
G(20200208010) = 73697337;
inf( 20200208010 )≈ 73656071.6 , Δ≈-0.0005599,infS(m) = 25874204 , k(m)= 2.8467
G(20200208012) = 26654801;
inf( 20200208012 )≈ 26643950 , Δ≈-0.0004071,infS(m) = 25874204 , k(m)= 1.02975
G(20200208014) = 31550696;
inf( 20200208014 )≈ 31526722.4 , Δ≈-0.0007598,infS(m) = 25874204 , k(m)= 1.21846
G(20200208016) = 53264022;
inf( 20200208016 )≈ 53226934 , Δ≈-0.0006963,infS(m) = 25874204 , k(m)= 2.05714
G(20200208018) = 25899592;
inf( 20200208018 )≈ 25884918 , Δ≈-0.0005666,infS(m) = 25874204.01 , k(m)= 1.00041
G(20200208020) = 35283169;
inf( 20200208020 )≈ 35265581.8 , Δ≈-0.0004985,infS(m) = 25874204.01 , k(m)= 1.36296
G(20200208022) = 54272875 ;
inf( 20200208022 )≈ 54240916.6 , Δ≈-0.0005888,infS(m) = 25874204.01 , k(m)= 2.09633
time start =15:07:26 ,time end =15:11:40 ,time use =
计算式:
inf( 20200208000 ) = 1/(1+ .1535 )*( 20200208000 /2 -2)*p(m) ≈ 43827264.6
inf( 20200208002 ) = 1/(1+ .1535 )*( 20200208002 /2 -2)*p(m) ≈ 28275766.7
inf( 20200208004 ) = 1/(1+ .1535 )*( 20200208004 /2 -2)*p(m) ≈ 51748408
inf( 20200208006 ) = 1/(1+ .1535 )*( 20200208006 /2 -2)*p(m) ≈ 28768475.2
inf( 20200208008 ) = 1/(1+ .1535 )*( 20200208008 /2 -2)*p(m) ≈ 25874204
inf( 20200208010 ) = 1/(1+ .1535 )*( 20200208010 /2 -2)*p(m) ≈ 73656071.6
inf( 20200208012 ) = 1/(1+ .1535 )*( 20200208012 /2 -2)*p(m) ≈ 26643950
inf( 20200208014 ) = 1/(1+ .1535 )*( 20200208014 /2 -2)*p(m) ≈ 31526722.4
inf( 20200208016 ) = 1/(1+ .1535 )*( 20200208016 /2 -2)*p(m) ≈ 53226934
inf( 20200208018 ) = 1/(1+ .1535 )*( 20200208018 /2 -2)*p(m) ≈ 25884918
inf( 20200208020 ) = 1/(1+ .1535 )*( 20200208020 /2 -2)*p(m) ≈ 35265581.8
inf( 20200208022 ) = 1/(1+ .1535 )*( 20200208022 /2 -2)*p(m) ≈ 54240916.6
计算式中:
p(m)=0.5π(1- 2/r )* π[(p1-1)/(p1- 2)],
其中,波动系数k(m)=π[(p1-1)/(p1- 2)],p1系偶数M含有的奇素因子,p1<√(M-2);
1/(1+ .1535 )—— 修正系数。
|
|