|
本帖最后由 jzkyllcjl 于 2019-7-23 08:06 编辑
以下是很早给你写出的论述与基本定理。①任何无穷序列都必须有一个通项的写出法则;②无穷序列既具有按照通项写出法则无限延续下去的性质,又具有永远写不到底,永远延续不不到底的性质;这两个性质不是违反形式逻辑中矛盾律的坏矛盾,因为:无限延续是在时间无限延续情况下讲的,延续不到底是对任何有限时间讲的。无穷序列中的省略号不是语文中的通常意义的省略号,而应当是这个具有矛盾着的性质的事物的表示符号。这个矛盾是满足唯物辩证法下对立统一性质的“一切事物中包含着的矛盾方面的相互依赖和相互斗争,决定一切事物的生命,推动一切事物的发展。没有什么事物是不包含矛盾的,没有矛盾,就无有世界”的好矛盾; ③自然数标准无穷数列:0,1,2,3,……(1)中的元素都叫做有限自然数;自然数标准数列(1)的所有元素,即所有自然数是无有穷尽、无有终了、无有最后的;自然标准数列中的省略号,不是通常意义的省略,是补充不完的、写不到底的省略;④不存在能够写出的无穷大自然数,《非标准分析》提出的*N 中的无限大自然数,是人们无法用十进记数法写出的、违反阿基米德性质的无用的虚构;⑤由于所有自然数无法构造完毕,所以 “所有”自然数的所有二字不能随便提出,事实上,笔者证明了如下基本定理。
基本定理(自然数的两个重要性质) ①在不受时间的限制下,任意大确定的自然数都是能够被人们写出的自然数;②全体(或称所有)自然数是人们永远无法写完其所有元素的集合。
证:首先证明定理的第一个论断。由于确定的自然数的位数是确定的,设其为N,又其中每一位上的数字不外0,1,2,……,9中的一个. 设写出这些符号的最长时间为θ,则写出这个确定的自然数的时间不大于Nθ,故在不受时间限制的条件下,任意大确定的自然数是能够被人们写出的。对于定理中的第二个论断,使用反证法. 设有时刻 T存在,使在[0,T]时段内,能把全体自然数写完,现在可以证明这个假设不成立。事实上,由于存在着任意多位数的自然数,每一位的数字必是0,1,2,……,9符号中的一个, 设写出这些符号的最短时间为ε,则总有位数为M自然数的存在,使Mε〉T。这说明,存在着在[0,T]时段内,写不出位数为M的自然数。故定理中的第二个论断也成立。
你不懂唯物辩证法,我说了无穷数列写不到底,但这是无穷数列 存在的条件,我没有说无穷序列是有限的。我提出 的是: 公理1:(自然数无穷数列的构造法则及其性质);①自然数的十进记数法是自然数无穷数列的构造法则;②按照从小到大的顺序,得到下边的无穷数列:
0,1,2,3,…11,…… (1)
将这个数列的通项记作n,则得数列{n}的广义极限为符号+∞表示的非正常实数,所以这个数列叫做无穷数列;③这个数列具有永远写不到底性质,所以笔者称这个数列为想象性质的理想数学元素中理想性无穷数列;④数列(1)中不存在无穷大自然数;这个数列中的数都可以被写出;所以笔者称这个数列中的数都是现实数学元素;都是有限自然数;⑤ 由于这个数列在数学理论中的基础性作用,所以笔者称这个数列为基础性质的无限增大着的数列。
我没有吃狗屎,我没有 否定自然数集的既存性,我只是说 它是一个广义极限性的 理想事物。我说的是:
理想自然数集合的构造过程及其理想性质:由(1)式可以依次做出正常集合的无穷序列
{0},{0,1},{0,1,2},…,{0,1,2,3,4,5,6,7,8。9。10。11}…… (2)
这个序列(2)的趋向性质的事物可以写作N={0,1,2,3,……n,……},笔者称N是序列(2)的广义极限性质的想象性质的、无法构作完毕或完成的理想自然数的理想集合。其元素个数为符号+∞表示的非正常实数;,它是序列(2)中的各个正常集合元素个数数列{n+1}广义极限性质的非正常实数, 依照定义2,这个集合为非正常集合。 |
|