|
本帖最后由 愚工688 于 2022-7-3 14:55 编辑
谈论无穷小量的比值的极限问题,却抛开无穷小量阶的概念,无穷小量的比较的极限基础法则,抛开现有教科书上面的极限理论,不谈实际的检验结果。
用自己想当然的观察,推理,能够正确吗???
百度资料:无穷小与极限 (https://wenku.baidu.com/view/f4e265d476eeaeaad1f33023.html)
8、无穷小量的比较
设α(x),β(x)都是对应于某同一极限过程的无穷小量.
若lim α(x)/β(x)= c ≠0, 则α(x)与β(x)是同阶无穷小.
(其逆定理则是:若α(x)与β(x)是同阶无穷小,则lim α(x)/β(x)= c ≠0 ;)
若 lim α(x)/β(x) =0,则 α(x)是β(x)的高阶无穷小,记为 α=ο(β);
特别 lim α(x)/β(x) = 1 ,则α(x)是β(x)是等价无穷小,记为 α~β
---------------------------------------------
教科书上对于无穷小量的阶的概念做确切的叙述:(摘自《高等数学》教材28页,书号:13012.096)
设u,v是两个无穷小量,即lim u=0,lim v=0,
(1)若 lim u/v =0 ,这说明分子u趋于0的速度比分母v趋于0的速度要快得多,则称为u为比v高价的无穷小量,记为u=0(v);
(2)若 lim u/v =∞ ,这说明分母v趋于0的速度比分子u趋于0的速度要快得多,则称为u为比v低价的无穷小量;
(3)若 lim u/v =a (a≠0 ),这说明分子u与分母v趋于0的速度差不多,则称为u与v 为同阶的无穷小量;
(4)若 lim u/v =1 ,这说明分子u与分母v趋于0的速度一样,则称为u与v 是等阶的无穷小量,记作u~v。
(3)若 lim u/v =a (a≠0 ),这说明分子u与分母v趋于0的速度差不多,则称为u与v 为同阶的无穷小量;
1)判断π(1-1/p)的极限:
π(1-1/p)=π[(p-1)/p]=π(p-1)/π(p)=π(1/p )÷π[(1/(p-1 )]
x→∞时,p→∞,
π(p-1)→∞与π(p)→∞ ,则π[1/(p-1)]→0,π[1/p]→0,
下面即为这两个无穷小量的趋0速度比较实验(阶的 判断):
那么这两个无穷小量是否是同阶无穷小量呢?
以实验数据作依据,即可得到结论:
p( 2 )= 3 , π[1/(p)]= .3333333333333333 , π[1/(p-1)]= .5
p( 3 )= 5 , π[1/(p)]= 6.666666666666667D-02 , π[1/(p-1)]= .125
p( 4 )= 7 , π[1/(p)]= 9.523809523809523D-03 , π[1/(p-1)]= 2.083333333333333D-02
p( 5 )= 11 , π[1/(p)]= 8.658008658008657D-04 , π[1/(p-1)]= 2.083333333333333D-03
……
p( 135 )= 761 , π[1/(p)]= 1.592007967968415D-318 , π[1/(p-1)]= 9.46898549143166D-318
p( 136 )= 769 , π[1/(p)]= 2.070135056074823D-321 , π[1/(p-1)]= 1.23269378637391D-320
p( 137 )= 773 , π[1/(p)]= 0 , π[1/(p-1)]= 0
p( 138 )= 787 , π[1/(p)]= 0 , π[1/(p-1)]= 0
显然两者趋于0的速度差不多,但是 π[1/(p)]÷π[1/(p-1)]≠1,故两者是同阶无穷小量。
|
|