数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: ysr

朋友,请看一下重要启示!

[复制链接]
 楼主| 发表于 2023-2-11 06:41 | 显示全部楼层
有114组/d=6.22364178816818E+22=249472278784^2=2494722787842+52192  f=5266767756252+249472278784^2 e=5219^2+526676775625^2
/d=6.22364178816819E+22=249472278784^2=2494722787842+102052  f=5266767756252+249472278784^2 e=10205^2+526676775625^2
/d=3.39624843864428E+23=582773406964^2=2494722787842+5266767756252  f=52192+249472278784^2 e=526676775625^2+5219^2
/d=3.39624843864428E+23=582773406964^2=2494722787842+5266767756252  f=102052+249472278784^2 e=526676775625^2+10205^2
/d=6.22364178816818E+22=249472278784^2=52192+2494722787842  f=5266767756252+5219^2 e=249472278784^2+526676775625^2
/d=4.05476649855226E+23=636770484441^2=52192+6367704844412  f=6067225977762+5219^2 e=636770484441^2+606722597776^2
/d=4.04503950039062E+23=636006250000^2=52192+6360062500002  f=5266767756252+5219^2 e=636006250000^2+526676775625^2
/d=4.01862779541181E+23=633926478025^2=52192+6339264780252  f=4961849952162+5219^2 e=633926478025^2+496184995216^2
/d=3.77262570260867E+23=614217038400^2=52192+6142170384002  f=5835065433762+5219^2 e=614217038400^2+583506543376^2
/d=3.68112310652058E+23=606722597776^2=52192+6067225977762  f=6367704844412+5219^2 e=606722597776^2+636770484441^2
/d=3.54966934299469E+23=595791015625^2=52192+5957910156252  f=4834768556252+5219^2 e=595791015625^2+483476855625^2
/d=3.40479886162608E+23=583506543376^2=52192+5835065433762  f=6142170384002+5219^2 e=583506543376^2+614217038400^2
/d=2.77388425982747E+23=526676775625^2=52192+5266767756252  f=2494722787842+5219^2 e=526676775625^2+249472278784^2
/d=2.77388425982747E+23=526676775625^2=52192+5266767756252  f=6360062500002+5219^2 e=526676775625^2+636006250000^2
/d=2.46199549477502E+23=496184995216^2=52192+4961849952162  f=6339264780252+5219^2 e=496184995216^2+633926478025^2
/d=2.33749869925037E+23=483476855625^2=52192+4834768556252  f=5957910156252+5219^2 e=483476855625^2+595791015625^2
/d=6.22364178816819E+22=249472278784^2=102052+2494722787842  f=5266767756252+10205^2 e=249472278784^2+526676775625^2
/d=4.05476649855226E+23=636770484441^2=102052+6367704844412  f=6067225977762+10205^2 e=636770484441^2+606722597776^2
/d=4.04503950039063E+23=636006250000^2=102052+6360062500002  f=5266767756252+10205^2 e=636006250000^2+526676775625^2
/d=4.01862779541181E+23=633926478025^2=102052+6339264780252  f=4961849952162+10205^2 e=633926478025^2+496184995216^2
/d=3.77262570260867E+23=614217038400^2=102052+6142170384002  f=5835065433762+10205^2 e=614217038400^2+583506543376^2
/d=3.68112310652058E+23=606722597776^2=102052+6067225977762  f=6367704844412+10205^2 e=606722597776^2+636770484441^2
/d=3.54966934299469E+23=595791015625^2=102052+5957910156252  f=4834768556252+10205^2 e=595791015625^2+483476855625^2
/d=3.40479886162608E+23=583506543376^2=102052+5835065433762  f=6142170384002+10205^2 e=583506543376^2+614217038400^2
/d=2.77388425982747E+23=526676775625^2=102052+5266767756252  f=2494722787842+10205^2 e=526676775625^2+249472278784^2
/d=2.77388425982747E+23=526676775625^2=102052+5266767756252  f=6360062500002+10205^2 e=526676775625^2+636006250000^2
/d=2.46199549477502E+23=496184995216^2=102052+4961849952162  f=6339264780252+10205^2 e=496184995216^2+633926478025^2
/d=2.33749869925037E+23=483476855625^2=102052+4834768556252  f=5957910156252+10205^2 e=483476855625^2+595791015625^2
/d=4.05476649855226E+23=636770484441^2=179002+6367704844412  f=6067225977762+17900^2 e=636770484441^2+606722597776^2
/d=4.04503950039063E+23=636006250000^2=179002+6360062500002  f=5266767756252+17900^2 e=636006250000^2+526676775625^2
/d=4.01862779541181E+23=633926478025^2=179002+6339264780252  f=4961849952162+17900^2 e=633926478025^2+496184995216^2
/d=3.77262570260867E+23=614217038400^2=179002+6142170384002  f=5835065433762+17900^2 e=614217038400^2+583506543376^2
/d=3.68112310652058E+23=606722597776^2=179002+6067225977762  f=6367704844412+17900^2 e=606722597776^2+636770484441^2
/d=3.54966934299469E+23=595791015625^2=179002+5957910156252  f=4834768556252+17900^2 e=595791015625^2+483476855625^2
/d=3.40479886162608E+23=583506543376^2=179002+5835065433762  f=6142170384002+17900^2 e=583506543376^2+614217038400^2
/d=2.77388425982747E+23=526676775625^2=179002+5266767756252  f=6360062500002+17900^2 e=526676775625^2+636006250000^2
/d=2.46199549477502E+23=496184995216^2=179002+4961849952162  f=6339264780252+17900^2 e=496184995216^2+633926478025^2
/d=2.33749869925037E+23=483476855625^2=179002+4834768556252  f=5957910156252+17900^2 e=483476855625^2+595791015625^2
/d=4.04503950039063E+23=636006250000^2=281012+6360062500002  f=5266767756252+28101^2 e=636006250000^2+526676775625^2
/d=2.77388425982747E+23=526676775625^2=281012+5266767756252  f=6360062500002+28101^2 e=526676775625^2+636006250000^2
/d=4.04503950039063E+23=636006250000^2=288602+6360062500002  f=5266767756252+28860^2 e=636006250000^2+526676775625^2
/d=2.77388425982747E+23=526676775625^2=288602+5266767756252  f=6360062500002+28860^2 e=526676775625^2+636006250000^2
/d=4.05476649855226E+23=636770484441^2=6367704844412+52192  f=6067225977762+636770484441^2 e=5219^2+606722597776^2
/d=4.05476649855226E+23=636770484441^2=6367704844412+102052  f=6067225977762+636770484441^2 e=10205^2+606722597776^2
/d=4.05476649855226E+23=636770484441^2=6367704844412+179002  f=6067225977762+636770484441^2 e=17900^2+606722597776^2
/d=7.73588960507284E+23=879539061388^2=6367704844412+6067225977762  f=52192+636770484441^2 e=606722597776^2+5219^2
/d=7.73588960507284E+23=879539061388^2=6367704844412+6067225977762  f=102052+636770484441^2 e=606722597776^2+10205^2
/d=7.73588960507284E+23=879539061388^2=6367704844412+6067225977762  f=179002+636770484441^2 e=606722597776^2+17900^2
/d=4.04503950039062E+23=636006250000^2=6360062500002+52192  f=5266767756252+636006250000^2 e=5219^2+526676775625^2
/d=4.04503950039063E+23=636006250000^2=6360062500002+102052  f=5266767756252+636006250000^2 e=10205^2+526676775625^2
/d=4.04503950039063E+23=636006250000^2=6360062500002+179002  f=5266767756252+636006250000^2 e=17900^2+526676775625^2
/d=4.04503950039063E+23=636006250000^2=6360062500002+281012  f=5266767756252+636006250000^2 e=28101^2+526676775625^2
/d=4.04503950039063E+23=636006250000^2=6360062500002+288602  f=5266767756252+636006250000^2 e=28860^2+526676775625^2
/d=6.81892376021809E+23=825767749444^2=6360062500002+5266767756252  f=52192+636006250000^2 e=526676775625^2+5219^2
/d=6.81892376021809E+23=825767749444^2=6360062500002+5266767756252  f=102052+636006250000^2 e=526676775625^2+10205^2
/d=6.81892376021809E+23=825767749444^2=6360062500002+5266767756252  f=179002+636006250000^2 e=526676775625^2+17900^2
/d=6.81892376021809E+23=825767749444^2=6360062500002+5266767756252  f=281012+636006250000^2 e=526676775625^2+28101^2
/d=6.81892376021809E+23=825767749444^2=6360062500002+5266767756252  f=288602+636006250000^2 e=526676775625^2+28860^2
/d=4.01862779541181E+23=633926478025^2=6339264780252+52192  f=4961849952162+633926478025^2 e=5219^2+496184995216^2
/d=4.01862779541181E+23=633926478025^2=6339264780252+102052  f=4961849952162+633926478025^2 e=10205^2+496184995216^2
/d=4.01862779541181E+23=633926478025^2=6339264780252+179002  f=4961849952162+633926478025^2 e=17900^2+496184995216^2
/d=6.48062329018683E+23=805023185392^2=6339264780252+4961849952162  f=52192+633926478025^2 e=496184995216^2+5219^2
/d=6.48062329018683E+23=805023185392^2=6339264780252+4961849952162  f=102052+633926478025^2 e=496184995216^2+10205^2
/d=6.48062329018683E+23=805023185392^2=6339264780252+4961849952162  f=179002+633926478025^2 e=496184995216^2+17900^2
/d=3.77262570260867E+23=614217038400^2=6142170384002+52192  f=5835065433762+614217038400^2 e=5219^2+583506543376^2
/d=3.77262570260867E+23=614217038400^2=6142170384002+102052  f=5835065433762+614217038400^2 e=10205^2+583506543376^2
/d=3.77262570260867E+23=614217038400^2=6142170384002+179002  f=5835065433762+614217038400^2 e=17900^2+583506543376^2
/d=7.17742456423475E+23=847196822718^2=6142170384002+5835065433762  f=52192+614217038400^2 e=583506543376^2+5219^2
/d=7.17742456423475E+23=847196822718^2=6142170384002+5835065433762  f=102052+614217038400^2 e=583506543376^2+10205^2
/d=7.17742456423475E+23=847196822718^2=6142170384002+5835065433762  f=179002+614217038400^2 e=583506543376^2+17900^2
/d=3.68112310652058E+23=606722597776^2=6067225977762+52192  f=6367704844412+606722597776^2 e=5219^2+636770484441^2
/d=3.68112310652058E+23=606722597776^2=6067225977762+102052  f=6367704844412+606722597776^2 e=10205^2+636770484441^2
/d=3.68112310652058E+23=606722597776^2=6067225977762+179002  f=6367704844412+606722597776^2 e=17900^2+636770484441^2
/d=7.73588960507284E+23=879539061388^2=6067225977762+6367704844412  f=52192+606722597776^2 e=636770484441^2+5219^2
/d=7.73588960507284E+23=879539061388^2=6067225977762+6367704844412  f=102052+606722597776^2 e=636770484441^2+10205^2
/d=7.73588960507284E+23=879539061388^2=6067225977762+6367704844412  f=179002+606722597776^2 e=636770484441^2+17900^2
/d=3.54966934299469E+23=595791015625^2=5957910156252+52192  f=4834768556252+595791015625^2 e=5219^2+483476855625^2
/d=3.54966934299469E+23=595791015625^2=5957910156252+102052  f=4834768556252+595791015625^2 e=10205^2+483476855625^2
/d=3.54966934299469E+23=595791015625^2=5957910156252+179002  f=4834768556252+595791015625^2 e=17900^2+483476855625^2
/d=5.88716804224506E+23=767278830820^2=5957910156252+4834768556252  f=52192+595791015625^2 e=483476855625^2+5219^2
/d=5.88716804224506E+23=767278830820^2=5957910156252+4834768556252  f=102052+595791015625^2 e=483476855625^2+10205^2
/d=5.88716804224506E+23=767278830820^2=5957910156252+4834768556252  f=179002+595791015625^2 e=483476855625^2+17900^2
/d=3.40479886162608E+23=583506543376^2=5835065433762+52192  f=6142170384002+583506543376^2 e=5219^2+614217038400^2
/d=3.40479886162608E+23=583506543376^2=5835065433762+102052  f=6142170384002+583506543376^2 e=10205^2+614217038400^2
/d=3.40479886162608E+23=583506543376^2=5835065433762+179002  f=6142170384002+583506543376^2 e=17900^2+614217038400^2
/d=7.17742456423475E+23=847196822718^2=5835065433762+6142170384002  f=52192+583506543376^2 e=614217038400^2+5219^2
/d=7.17742456423475E+23=847196822718^2=5835065433762+6142170384002  f=102052+583506543376^2 e=614217038400^2+10205^2
/d=7.17742456423475E+23=847196822718^2=5835065433762+6142170384002  f=179002+583506543376^2 e=614217038400^2+17900^2
/d=3.39624843864428E+23=582773406964^2=5266767756252+2494722787842  f=52192+526676775625^2 e=249472278784^2+5219^2
/d=3.39624843864428E+23=582773406964^2=5266767756252+2494722787842  f=102052+526676775625^2 e=249472278784^2+10205^2
/d=2.77388425982747E+23=526676775625^2=5266767756252+52192  f=2494722787842+526676775625^2 e=5219^2+249472278784^2
/d=2.77388425982747E+23=526676775625^2=5266767756252+52192  f=6360062500002+526676775625^2 e=5219^2+636006250000^2
/d=2.77388425982747E+23=526676775625^2=5266767756252+102052  f=2494722787842+526676775625^2 e=10205^2+249472278784^2
/d=2.77388425982747E+23=526676775625^2=5266767756252+102052  f=6360062500002+526676775625^2 e=10205^2+636006250000^2
/d=2.77388425982747E+23=526676775625^2=5266767756252+179002  f=6360062500002+526676775625^2 e=17900^2+636006250000^2
/d=2.77388425982747E+23=526676775625^2=5266767756252+281012  f=6360062500002+526676775625^2 e=28101^2+636006250000^2
/d=2.77388425982747E+23=526676775625^2=5266767756252+288602  f=6360062500002+526676775625^2 e=28860^2+636006250000^2
/d=6.81892376021809E+23=825767749444^2=5266767756252+6360062500002  f=52192+526676775625^2 e=636006250000^2+5219^2
/d=6.81892376021809E+23=825767749444^2=5266767756252+6360062500002  f=102052+526676775625^2 e=636006250000^2+10205^2
/d=6.81892376021809E+23=825767749444^2=5266767756252+6360062500002  f=179002+526676775625^2 e=636006250000^2+17900^2
/d=6.81892376021809E+23=825767749444^2=5266767756252+6360062500002  f=281012+526676775625^2 e=636006250000^2+28101^2
/d=6.81892376021809E+23=825767749444^2=5266767756252+6360062500002  f=288602+526676775625^2 e=636006250000^2+28860^2
/d=2.46199549477502E+23=496184995216^2=4961849952162+52192  f=6339264780252+496184995216^2 e=5219^2+633926478025^2
/d=2.46199549477502E+23=496184995216^2=4961849952162+102052  f=6339264780252+496184995216^2 e=10205^2+633926478025^2
/d=2.46199549477502E+23=496184995216^2=4961849952162+179002  f=6339264780252+496184995216^2 e=17900^2+633926478025^2
/d=6.48062329018683E+23=805023185392^2=4961849952162+6339264780252  f=52192+496184995216^2 e=633926478025^2+5219^2
/d=6.48062329018683E+23=805023185392^2=4961849952162+6339264780252  f=102052+496184995216^2 e=633926478025^2+10205^2
/d=6.48062329018683E+23=805023185392^2=4961849952162+6339264780252  f=179002+496184995216^2 e=633926478025^2+17900^2
/d=2.33749869925037E+23=483476855625^2=4834768556252+52192  f=5957910156252+483476855625^2 e=5219^2+595791015625^2
/d=2.33749869925037E+23=483476855625^2=4834768556252+102052  f=5957910156252+483476855625^2 e=10205^2+595791015625^2
/d=2.33749869925037E+23=483476855625^2=4834768556252+179002  f=5957910156252+483476855625^2 e=17900^2+595791015625^2
/d=5.88716804224506E+23=767278830820^2=4834768556252+5957910156252  f=52192+483476855625^2 e=595791015625^2+5219^2
/d=5.88716804224506E+23=767278830820^2=4834768556252+5957910156252  f=102052+483476855625^2 e=595791015625^2+10205^2
/d=5.88716804224506E+23=767278830820^2=4834768556252+5957910156252  f=179002+483476855625^2 e=595791015625^2+17900^2
/平方数104052^2的拆分解有:4组/104052^2=37260^2+97152^2
/104052^2=40020^2+96048^2
/104052^2=41952^2+95220^2
/104052^2=71760^2+75348^2
这些都是面对角线都是整数的长方体。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-2-11 06:46 | 显示全部楼层
Private Sub Command1_Click()
'体对角线是整数的程序
Dim a, B, ak()
a = Trim(Text1)
a1 = 1
Do While a1 ^ 2 <= (a + 1) ^ 2 / 2
a2 = a ^ 2 - a1 ^ 2
If InStr(a2 ^ (1 / 2), ".") = 0 Then
js = js + 1
s2 = s2 & "/" & a & "^2=" & a1 & "^2+" & a2 ^ (1 / 2) & "^2" & vbCrLf
s13 = s13 & "/" & a1 ^ 2 & "/" & a2
Else
s13 = s13
End If

a1 = a1 + 1
Loop
s = "/67184/323861151744/94848/319378698496/129808/311524724736/141056/308478046464/156864/303768527104/205200/286267801600/220400/279798681600/231040/274995360000/280896/249472278784/290928/243735740416/304912/235403513856/343824/210159898624/395200/172191801600/5219/641774027664/10205/641697123600/17900/641480855625/28101/641011599424/28860/640968366025/31941/640781038144/34075/640640160000/44268/639841609801/56925/638560810000/60000/638201265625/65960/637450544025/70928/636770484441/76125/636006250000/88740/633926478025/93925/632979360000/98875“"
s = s & "/632025000000/104052/630974446921/104805/630817177600/122525/626788890000/127680/625499083225/132600/624218505625/150220/619235217225/163995/614906905600/166085/614217038400/169100/613206455625/181475/608868090000/187293/606722597776/191400/605167305625/197200/602913425625/207075/598921210000/209467/597924841536/214500/595791015625/219300/593708775625/224315/591484046400/225044/591156463689/241443/583506543376/251875"
s = s & "/578360250000/254800/576878225625/256824/575842698649/278396/564296932809/281285/562680014400/281996/562279521609/286875/559504000000/291525/556814440000/296380/553960161225/298680/552591523225/308125/546860250000/312936/543872325529/313635/543434352400/317520/540982315225/323000/537472265625/334565/529867526400/337364/527986797129/339300/526676775625/348517/520337166336/351973/517916272896/367965/506403024400/372387/503129187856/377000/499672265625/381597/496184995216/392700/487587975625/397900/483476855625/401563/480548422656"
s = s & "/402220/480020337225/406725/476376040000/415484/469174311369/417600/467411505625/422045/463679283600/426275/460090890000/431325/455760010000/433920/453514699225/452980/436610385225/454740/435012798025/457275/432700840000/466235/424426190400/472472/418571474841/480675/410752810000/484840/406731440025/488800/402875825625/494875/396900000000/502860/388933086025/503451/388338356224/507500/384245015625/515355/376210489600/525000/366176265625/527325/363729610000/528931/362033262864/531811/358978325904/539400/350848905625/548709/340719698944/552500/336545015625/556100/332554055625/559845/328374841600/560388/327766555081"
s = s & "/7995/241729555600/17875/241473960000/20915/241356038400/25236/241156619929/28900/240958265625/36667/240449006736/38760/240291138025/46515/239629830400/46725/239610250000/54468/238826712601/72197/236581068816/75205/236137683600/83096/234888530409/92204/233291898009/92820/233177923225/100045/231784473600/100659/231661241344/103635/231053262400/109701/229759166224/113275/228962250000/117480/227991925225/120432/227289609001/121040/227142794025/128773/225210990096/137683/222836867136/138285/222670734400/145340/220669760025/154752/217845294121/165189/214506069904/165581/214376408064/172500/212037225625/181720"
s = s & "/208771317225/181916/208700044569/189125/206025210000/192507/204734530576/196480/203189085225/205500/199563225625/208260/198421248025/208828/198184342041/215475/195364000000/224315/191476256400/231400/188247515625/234080/187000029225/242724/182878535449/249645/179470849600/256320/176093533225/256500/176001225625/263109/172567129744/264880/171632061225/271405/168132801600/278036/164489458329/280540/163090784025/288600/158503515625/294533/155043787536/295035/154747824400/301392/150956337961/308652/146527418521/309140/146225936025/311500/144761225625/314835/142672398400/317645/140895129600/322363/137875571856/325125/136087210000/330616/132486536169/330924/132282781849/331080/132179509225/343629/123712585984"

s4 = Split(s, "/")
j = UBound(s4)
For k = 1 To j
      n1 = n1 + 1
       ReDim Preserve ak(1 To n1)
      ak(n1) = s4(n1)
      s12 = s12 & "/" & Val(ak(n1)) ^ 2
    Next
    s12 = s12 & "/" & s13
    s6 = paixu3(Trim(s12), Trim(s12))
s3 = paixu33(Trim(s), Trim(s), Trim(s))
's3 = "/" & s3
s5 = Split(s3, "/")
j1 = UBound(s5)
If js = 0 Then
Text2 = "有" & j1 & "组" & s3
Else
Text2 = "有" & j1 & "组" & s3 & "/平方数" & a & "^2的拆分解有:" & js & "组" & s2
End If

End Sub

Private Sub Command2_Click()
Text1 = ""
Text2 = ""

End Sub

Private Function paixu33(a As String, B As String, c As String) As String
Dim i As Integer
Dim ak(), s105, cr(), f, bk(), cr1()
s103 = a
Set f = CreateObject("Scripting.Dictionary")
s105 = Split(s103, "/")
s205 = Split(B, "/")
s206 = Split(c, "/")
   j1 = UBound(s105)
   j2 = UBound(s205)
   j3 = UBound(s206)
   Print j1
   For k = 1 To j1
      n1 = n1 + 1
       ReDim Preserve ak(1 To n1)
      ak(n1) = s105(n1)
    Next
    For k = 1 To j2
      n2 = n2 + 1
        ReDim Preserve bk(1 To n2)
       bk(n2) = s205(n2)
    Next
    For k = 1 To j3
      n3 = n3 + 1
        ReDim Preserve cr(1 To n3)
       cr(n3) = s206(n3)
    Next
   
     n = 0
        For k = 100 To 160
           For i = 100 To 160
            For i1 = 100 To 160
             n = n + 1
             ReDim Preserve cr1(1 To n)
            m = Val(ak(k)) + Val(bk(i)) + Val(cr(i1))
            a = Val(ak(k))
            B = Val(bk(i))
            c = Val(cr(i1))
            d = Val(a ^ 2 + B ^ 2)
            e = Val(B ^ 2 + c ^ 2)
            g = Val(a ^ 2 + B ^ 2 + c ^ 2)
            f = Val(a ^ 2 + c ^ 2)
            If InStr(Sqr(Val(g)), ".") = 0 And Val(ak(k)) <> 0 And Val(bk(i)) <> 0 Then
            s22 = s22 & "/" & g & "=" & g ^ (1 / 2) & "^2=" & Val(ak(k)) ^ 2 & "+" & Val(bk(i)) ^ 2 & "+" & Val(cr(i1)) ^ 2 & "=" & Val(ak(k)) & "^2+" & Val(bk(i)) & "^2+" & Val(cr(i1)) & "^2" & vbCrLf
            Else
            s22 = s22
            End If
      Next
      Next
    Next
      
         MsgBox "ok"
     MsgBox s22  '显示数组
     paixu33 = s22
End Function


Private Function paixu3(a As String, B As String) As String
Dim i As Integer
Dim ak(), s105, cr(), f, bk()
s103 = a
Set f = CreateObject("Scripting.Dictionary")
s105 = Split(s103, "/")
s205 = Split(B, "/")
   j1 = UBound(s105)
   j2 = UBound(s205)
   Print j1
   For k = 1 To j1
      n1 = n1 + 1
       ReDim Preserve ak(1 To n1)
      ak(n1) = s105(n1)
    Next
    For k = 1 To j2
      n2 = n2 + 1
        ReDim Preserve bk(1 To n2)
       bk(n2) = s205(n2)
    Next
   
     n = 0
        For k = 1 To j1
           For i = 1 To j2
             n = n + 1
             ReDim Preserve cr(1 To n)
            m = Val(ak(k)) + Val(bk(i))
            f(m) = ""
      Next
    Next
      n = 0
      m = f.Keys
      For i = 0 To j1
          ReDim Preserve cr(1 To i + 1)
          cr(i + 1) = m(i)
      Next
     For i = 1 To UBound(cr) - 1
        For j = i + 1 To UBound(cr)
            If cr(i) > cr(j) Then
                temp = cr(j)
                cr(j) = cr(i)
                cr(i) = temp  'c数组是排序好的
            End If
        Next j
        
       ' If i Mod 20 = 0 Then
       ' s104 = s104 & temp & "/" & vbCrLf
       ' Else
       ' s104 = s104 & temp & "/"
       ' End If
    Next i
   
      For i = 1 To UBound(cr)
        If i Mod 20 = 0 Then
          s104 = s104 & cr(i) & "/" & vbCrLf
        Else
          s104 = s104 & cr(i) & "/"
        End If
     Next
         Print temp
         MsgBox "ok"
     MsgBox s104  '显示数组
     paixu3 = s104
End Function

Private Function paixu0(a As String, B As String) As String
Dim i As Integer
Dim ak(), s105, cr(), f, bk()
s103 = a
Set f = CreateObject("Scripting.Dictionary")
s105 = Split(s103, "/")
s205 = Split(B, "/")
   j1 = UBound(s105)
   j2 = UBound(s205)
   Print j1
   For k = 1 To j1
      n1 = n1 + 1
       ReDim Preserve ak(1 To n1)
      ak(n1) = s105(n1)
    Next
    For k = 1 To j2
      n2 = n2 + 1
        ReDim Preserve bk(1 To n2)
       bk(n2) = s205(n2)
    Next
   
     n = 0
        For k = 1 To j1
           For i = 1 To j2
             n = n + 1
             ReDim Preserve cr(1 To n)
            m = Val(ak(k)) + Val(bk(i))
            f(m) = ""
            If InStr(Sqr(Val(m)), ".") = 0 And Val(ak(k)) <> 0 And Val(bk(i)) <> 0 Then
            s22 = s22 & "/" & m & "=" & m ^ (1 / 2) & "^2=" & Val(ak(k)) & "+" & Val(bk(i)) & "=" & Val(ak(k)) ^ (1 / 2) & "^2+" & Val(bk(i)) ^ (1 / 2) & "^2" & vbCrLf
            Else
            s22 = s22
            End If
      Next
    Next
      
         MsgBox "ok"
     MsgBox s22  '显示数组
     paixu0 = s22
End Function
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-2-11 09:56 | 显示全部楼层
本帖最后由 ysr 于 2023-2-11 05:30 编辑

Private Sub Command1_Click()
'面对角线是整数的程序
Dim a, B, ak()
a = Trim(Text1)
a1 = 1
Do While a1 ^ 2 <= (a + 1) ^ 2 / 2
a2 = a ^ 2 - a1 ^ 2
If InStr(a2 ^ (1 / 2), ".") = 0 Then
js = js + 1
s2 = s2 & "/" & a & "^2=" & a1 & "^2+" & a2 ^ (1 / 2) & "^2" & vbCrLf
s13 = s13 & "/" & a1 ^ 2 & "/" & a2
Else
s13 = s13
End If

a1 = a1 + 1
Loop
s = "/67184/323861151744/94848/319378698496/129808/311524724736/141056/308478046464/156864/303768527104/205200/286267801600/220400/279798681600/231040/274995360000/280896/249472278784/290928/243735740416/304912/235403513856/343824/210159898624/395200/172191801600/5219/641774027664/10205/641697123600/17900/641480855625/28101/641011599424/28860/640968366025/31941/640781038144/34075/640640160000/44268/639841609801/56925/638560810000/60000/638201265625/65960/637450544025/70928/636770484441/76125/636006250000/88740/633926478025/93925/632979360000/98875“"
s = s & "/632025000000/104052/630974446921/104805/630817177600/122525/626788890000/127680/625499083225/132600/624218505625/150220/619235217225/163995/614906905600/166085/614217038400/169100/613206455625/181475/608868090000/187293/606722597776/191400/605167305625/197200/602913425625/207075/598921210000/209467/597924841536/214500/595791015625/219300/593708775625/224315/591484046400/225044/591156463689/241443/583506543376/251875"
s = s & "/578360250000/254800/576878225625/256824/575842698649/278396/564296932809/281285/562680014400/281996/562279521609/286875/559504000000/291525/556814440000/296380/553960161225/298680/552591523225/308125/546860250000/312936/543872325529/313635/543434352400/317520/540982315225/323000/537472265625/334565/529867526400/337364/527986797129/339300/526676775625/348517/520337166336/351973/517916272896/367965/506403024400/372387/503129187856/377000/499672265625/381597/496184995216/392700/487587975625/397900/483476855625/401563/480548422656"
s = s & "/402220/480020337225/406725/476376040000/415484/469174311369/417600/467411505625/422045/463679283600/426275/460090890000/431325/455760010000/433920/453514699225/452980/436610385225/454740/435012798025/457275/432700840000/466235/424426190400/472472/418571474841/480675/410752810000/484840/406731440025/488800/402875825625/494875/396900000000/502860/388933086025/503451/388338356224/507500/384245015625/515355/376210489600/525000/366176265625/527325/363729610000/528931/362033262864/531811/358978325904/539400/350848905625/548709/340719698944/552500/336545015625/556100/332554055625/559845/328374841600/560388/327766555081"
s = s & "/7995/241729555600/17875/241473960000/20915/241356038400/25236/241156619929/28900/240958265625/36667/240449006736/38760/240291138025/46515/239629830400/46725/239610250000/54468/238826712601/72197/236581068816/75205/236137683600/83096/234888530409/92204/233291898009/92820/233177923225/100045/231784473600/100659/231661241344/103635/231053262400/109701/229759166224/113275/228962250000/117480/227991925225/120432/227289609001/121040/227142794025/128773/225210990096/137683/222836867136/138285/222670734400/145340/220669760025/154752/217845294121/165189/214506069904/165581/214376408064/172500/212037225625/181720"
s = s & "/208771317225/181916/208700044569/189125/206025210000/192507/204734530576/196480/203189085225/205500/199563225625/208260/198421248025/208828/198184342041/215475/195364000000/224315/191476256400/231400/188247515625/234080/187000029225/242724/182878535449/249645/179470849600/256320/176093533225/256500/176001225625/263109/172567129744/264880/171632061225/271405/168132801600/278036/164489458329/280540/163090784025/288600/158503515625/294533/155043787536/295035/154747824400/301392/150956337961/308652/146527418521/309140/146225936025/311500/144761225625/314835/142672398400/317645/140895129600/322363/137875571856/325125/136087210000/330616/132486536169/330924/132282781849/331080/132179509225/343629/123712585984"

s4 = Split(s, "/")
j = UBound(s4)
For k = 1 To j
      n1 = n1 + 1
       ReDim Preserve ak(1 To n1)
      ak(n1) = s4(n1)
      s12 = s12 & "/" & Val(ak(n1)) ^ 2
    Next
    s12 = s12 & "/" & s13
    s6 = paixu3(Trim(s12), Trim(s12))
s3 = paixu33(Trim(s), Trim(s), Trim(s))
's3 = "/" & s3
s5 = Split(s3, "/")
j1 = UBound(s5)
If js = 0 Then
Text2 = "有" & j1 & "组" & s3
Else
Text2 = "有" & j1 & "组" & s3 & "/平方数" & a & "^2的拆分解有:" & js & "组" & s2
End If

End Sub

Private Sub Command2_Click()
Text1 = ""
Text2 = ""

End Sub

Private Function paixu33(a As String, B As String, c As String) As String
Dim i As Integer
Dim ak(), s105, cr(), f, bk(), cr1()
s103 = a
Set f = CreateObject("Scripting.Dictionary")
s105 = Split(s103, "/")
s205 = Split(B, "/")
s206 = Split(c, "/")
   j1 = UBound(s105)
   j2 = UBound(s205)
   j3 = UBound(s206)
   Print j1
   For k = 1 To j1
      n1 = n1 + 1
       ReDim Preserve ak(1 To n1)
      ak(n1) = s105(n1)
    Next
    For k = 1 To j2
      n2 = n2 + 1
        ReDim Preserve bk(1 To n2)
       bk(n2) = s205(n2)
    Next
    For k = 1 To j3
      n3 = n3 + 1
        ReDim Preserve cr(1 To n3)
       cr(n3) = s206(n3)
    Next
   
     n = 0
        For k = 1 To 160
           For i = 1 To 160
            For i1 = 1 To 160
             n = n + 1
             ReDim Preserve cr1(1 To n)
            m = Val(ak(k)) + Val(bk(i)) + Val(cr(i1))
            a = Val(ak(k))
            B = Val(bk(i))
            c = Val(cr(i1))
            d = MBBC(MPC1(MbC(Trim(a), Trim(a)), MbC(Trim(B), Trim(B))))
             e = MBBC(MPC1(MbC(Trim(c), Trim(c)), MbC(Trim(B), Trim(B))))
             f = MBBC(MPC1(MbC(Trim(a), Trim(a)), MbC(Trim(c), Trim(c))))
             g = MBBC(MPC1(MbC(Trim(a), Trim(a)), MPC1(MbC(Trim(c), Trim(c)), MbC(Trim(B), Trim(B)))))
            If InStr(Trim(d), "/") = 0 And InStr(Trim(e), "/") = 0 And InStr(Trim(f), "/") = 0 And Val(ak(k)) <> 0 And Val(bk(i)) <> 0 Then
            s22 = s22 & "/d=" & d^2 & "=" & d  & "^2=" & Val(ak(k)) & "^2+" & Val(bk(i)) & "^2  f=" & Val(cr(i1)) & "^2+" & Val(ak(k)) & "^2 e=" & Val(bk(i)) & "^2+" & Val(cr(i1)) & "^2" & vbCrLf
            Else
            s22 = s22
            End If
      Next
      Next
    Next
      
         MsgBox "ok"
     MsgBox s22  '显示数组
     paixu33 = s22
End Function


Private Function paixu3(a As String, B As String) As String
Dim i As Integer
Dim ak(), s105, cr(), f, bk()
s103 = a
Set f = CreateObject("Scripting.Dictionary")
s105 = Split(s103, "/")
s205 = Split(B, "/")
   j1 = UBound(s105)
   j2 = UBound(s205)
   Print j1
   For k = 1 To j1
      n1 = n1 + 1
       ReDim Preserve ak(1 To n1)
      ak(n1) = s105(n1)
    Next
    For k = 1 To j2
      n2 = n2 + 1
        ReDim Preserve bk(1 To n2)
       bk(n2) = s205(n2)
    Next
   
     n = 0
        For k = 1 To j1
           For i = 1 To j2
             n = n + 1
             ReDim Preserve cr(1 To n)
            m = Val(ak(k)) + Val(bk(i))
            f(m) = ""
      Next
    Next
      n = 0
      m = f.Keys
      For i = 0 To j1
          ReDim Preserve cr(1 To i + 1)
          cr(i + 1) = m(i)
      Next
     For i = 1 To UBound(cr) - 1
        For j = i + 1 To UBound(cr)
            If cr(i) > cr(j) Then
                temp = cr(j)
                cr(j) = cr(i)
                cr(i) = temp  'c数组是排序好的
            End If
        Next j
        
       ' If i Mod 20 = 0 Then
       ' s104 = s104 & temp & "/" & vbCrLf
       ' Else
       ' s104 = s104 & temp & "/"
       ' End If
    Next i
   
      For i = 1 To UBound(cr)
        If i Mod 20 = 0 Then
          s104 = s104 & cr(i) & "/" & vbCrLf
        Else
          s104 = s104 & cr(i) & "/"
        End If
     Next
         Print temp
         MsgBox "ok"
     MsgBox s104  '显示数组
     paixu3 = s104
End Function

Private Function paixu0(a As String, B As String) As String
Dim i As Integer
Dim ak(), s105, cr(), f, bk()
s103 = a
Set f = CreateObject("Scripting.Dictionary")
s105 = Split(s103, "/")
s205 = Split(B, "/")
   j1 = UBound(s105)
   j2 = UBound(s205)
   Print j1
   For k = 1 To j1
      n1 = n1 + 1
       ReDim Preserve ak(1 To n1)
      ak(n1) = s105(n1)
    Next
    For k = 1 To j2
      n2 = n2 + 1
        ReDim Preserve bk(1 To n2)
       bk(n2) = s205(n2)
    Next
   
     n = 0
        For k = 1 To j1
           For i = 1 To j2
             n = n + 1
             ReDim Preserve cr(1 To n)
            m = Val(ak(k)) + Val(bk(i))
            f(m) = ""
            If InStr(Sqr(Val(m)), ".") = 0 And Val(ak(k)) <> 0 And Val(bk(i)) <> 0 Then
            s22 = s22 & "/" & m & "=" & m ^ (1 / 2) & "^2=" & Val(ak(k)) & "+" & Val(bk(i)) & "=" & Val(ak(k)) ^ (1 / 2) & "^2+" & Val(bk(i)) ^ (1 / 2) & "^2" & vbCrLf
            Else
            s22 = s22
            End If
      Next
    Next
      
         MsgBox "ok"
     MsgBox s22  '显示数组
     paixu0 = s22
End Function
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-2-11 09:58 | 显示全部楼层
本帖最后由 ysr 于 2023-2-11 05:17 编辑

Private Sub Command1_Click()
'体对角线是整数的程序
Dim a, B, ak()
a = Trim(Text1)
a1 = 1
Do While a1 ^ 2 <= (a + 1) ^ 2 / 2
a2 = a ^ 2 - a1 ^ 2
If InStr(a2 ^ (1 / 2), ".") = 0 Then
js = js + 1
s2 = s2 & "/" & a & "^2=" & a1 & "^2+" & a2 ^ (1 / 2) & "^2" & vbCrLf
s13 = s13 & "/" & a1 ^ 2 & "/" & a2
Else
s13 = s13
End If

a1 = a1 + 1
Loop
s = "/67184/323861151744/94848/319378698496/129808/311524724736/141056/308478046464/156864/303768527104/205200/286267801600/220400/279798681600/231040/274995360000/280896/249472278784/290928/243735740416/304912/235403513856/343824/210159898624/395200/172191801600/5219/641774027664/10205/641697123600/17900/641480855625/28101/641011599424/28860/640968366025/31941/640781038144/34075/640640160000/44268/639841609801/56925/638560810000/60000/638201265625/65960/637450544025/70928/636770484441/76125/636006250000/88740/633926478025/93925/632979360000/98875“"
s = s & "/632025000000/104052/630974446921/104805/630817177600/122525/626788890000/127680/625499083225/132600/624218505625/150220/619235217225/163995/614906905600/166085/614217038400/169100/613206455625/181475/608868090000/187293/606722597776/191400/605167305625/197200/602913425625/207075/598921210000/209467/597924841536/214500/595791015625/219300/593708775625/224315/591484046400/225044/591156463689/241443/583506543376/251875"
s = s & "/578360250000/254800/576878225625/256824/575842698649/278396/564296932809/281285/562680014400/281996/562279521609/286875/559504000000/291525/556814440000/296380/553960161225/298680/552591523225/308125/546860250000/312936/543872325529/313635/543434352400/317520/540982315225/323000/537472265625/334565/529867526400/337364/527986797129/339300/526676775625/348517/520337166336/351973/517916272896/367965/506403024400/372387/503129187856/377000/499672265625/381597/496184995216/392700/487587975625/397900/483476855625/401563/480548422656"
s = s & "/402220/480020337225/406725/476376040000/415484/469174311369/417600/467411505625/422045/463679283600/426275/460090890000/431325/455760010000/433920/453514699225/452980/436610385225/454740/435012798025/457275/432700840000/466235/424426190400/472472/418571474841/480675/410752810000/484840/406731440025/488800/402875825625/494875/396900000000/502860/388933086025/503451/388338356224/507500/384245015625/515355/376210489600/525000/366176265625/527325/363729610000/528931/362033262864/531811/358978325904/539400/350848905625/548709/340719698944/552500/336545015625/556100/332554055625/559845/328374841600/560388/327766555081"
s = s & "/7995/241729555600/17875/241473960000/20915/241356038400/25236/241156619929/28900/240958265625/36667/240449006736/38760/240291138025/46515/239629830400/46725/239610250000/54468/238826712601/72197/236581068816/75205/236137683600/83096/234888530409/92204/233291898009/92820/233177923225/100045/231784473600/100659/231661241344/103635/231053262400/109701/229759166224/113275/228962250000/117480/227991925225/120432/227289609001/121040/227142794025/128773/225210990096/137683/222836867136/138285/222670734400/145340/220669760025/154752/217845294121/165189/214506069904/165581/214376408064/172500/212037225625/181720"
s = s & "/208771317225/181916/208700044569/189125/206025210000/192507/204734530576/196480/203189085225/205500/199563225625/208260/198421248025/208828/198184342041/215475/195364000000/224315/191476256400/231400/188247515625/234080/187000029225/242724/182878535449/249645/179470849600/256320/176093533225/256500/176001225625/263109/172567129744/264880/171632061225/271405/168132801600/278036/164489458329/280540/163090784025/288600/158503515625/294533/155043787536/295035/154747824400/301392/150956337961/308652/146527418521/309140/146225936025/311500/144761225625/314835/142672398400/317645/140895129600/322363/137875571856/325125/136087210000/330616/132486536169/330924/132282781849/331080/132179509225/343629/123712585984"

s4 = Split(s, "/")
j = UBound(s4)
For k = 1 To j
      n1 = n1 + 1
       ReDim Preserve ak(1 To n1)
      ak(n1) = s4(n1)
      s12 = s12 & "/" & Val(ak(n1)) ^ 2
    Next
    s12 = s12 & "/" & s13
    s6 = paixu3(Trim(s12), Trim(s12))
s3 = paixu33(Trim(s), Trim(s), Trim(s))
's3 = "/" & s3
s5 = Split(s3, "/")
j1 = UBound(s5)
If js = 0 Then
Text2 = "有" & j1 & "组" & s3
Else
Text2 = "有" & j1 & "组" & s3 & "/平方数" & a & "^2的拆分解有:" & js & "组" & s2
End If

End Sub

Private Sub Command2_Click()
Text1 = ""
Text2 = ""

End Sub

Private Function paixu33(a As String, B As String, c As String) As String
Dim i As Integer
Dim ak(), s105, cr(), f, bk(), cr1()
s103 = a
Set f = CreateObject("Scripting.Dictionary")
s105 = Split(s103, "/")
s205 = Split(B, "/")
s206 = Split(c, "/")
   j1 = UBound(s105)
   j2 = UBound(s205)
   j3 = UBound(s206)
   Print j1
   For k = 1 To j1
      n1 = n1 + 1
       ReDim Preserve ak(1 To n1)
      ak(n1) = s105(n1)
    Next
    For k = 1 To j2
      n2 = n2 + 1
        ReDim Preserve bk(1 To n2)
       bk(n2) = s205(n2)
    Next
    For k = 1 To j3
      n3 = n3 + 1
        ReDim Preserve cr(1 To n3)
       cr(n3) = s206(n3)
    Next
   
     n = 0
        For k = 50 To 170
           For i = 50 To 170
            For i1 = 50 To 170
             n = n + 1
             ReDim Preserve cr1(1 To n)
            m = Val(ak(k)) + Val(bk(i)) + Val(cr(i1))
            a = Val(ak(k))
            B = Val(bk(i))
            c = Val(cr(i1))
            d = MBBC(MPC1(MbC(Trim(a), Trim(a)), MbC(Trim(B), Trim(B))))
             e = MBBC(MPC1(MbC(Trim(c), Trim(c)), MbC(Trim(B), Trim(B))))
             f = MBBC(MPC1(MbC(Trim(a), Trim(a)), MbC(Trim(c), Trim(c))))
             g = MBBC(MPC1(MbC(Trim(a), Trim(a)), MPC1(MbC(Trim(c), Trim(c)), MbC(Trim(B), Trim(B)))))
            If InStr(Trim(g), "/") = 0 And Val(ak(k)) <> 0 And Val(bk(i)) <> 0 Then
            s22 = s22 & "/" & g ^ 2 & "=" & g & "^2=" & Val(ak(k)) ^ 2 & "+" & Val(bk(i)) ^ 2 & "+" & Val(cr(i1)) ^ 2 & "=" & Val(ak(k)) & "^2+" & Val(bk(i)) & "^2+" & Val(cr(i1)) & "^2" & vbCrLf
            Else
            s22 = s22
            End If
      Next
      Next
    Next
      
         MsgBox "ok"
     MsgBox s22  '显示数组
     paixu33 = s22
End Function

Private Function paixu3(a As String, B As String) As String
Dim i As Integer
Dim ak(), s105, cr(), f, bk()
s103 = a
Set f = CreateObject("Scripting.Dictionary")
s105 = Split(s103, "/")
s205 = Split(B, "/")
   j1 = UBound(s105)
   j2 = UBound(s205)
   Print j1
   For k = 1 To j1
      n1 = n1 + 1
       ReDim Preserve ak(1 To n1)
      ak(n1) = s105(n1)
    Next
    For k = 1 To j2
      n2 = n2 + 1
        ReDim Preserve bk(1 To n2)
       bk(n2) = s205(n2)
    Next
   
     n = 0
        For k = 1 To j1
           For i = 1 To j2
             n = n + 1
             ReDim Preserve cr(1 To n)
            m = Val(ak(k)) + Val(bk(i))
            f(m) = ""
      Next
    Next
      n = 0
      m = f.Keys
      For i = 0 To j1
          ReDim Preserve cr(1 To i + 1)
          cr(i + 1) = m(i)
      Next
     For i = 1 To UBound(cr) - 1
        For j = i + 1 To UBound(cr)
            If cr(i) > cr(j) Then
                temp = cr(j)
                cr(j) = cr(i)
                cr(i) = temp  'c数组是排序好的
            End If
        Next j
        
       ' If i Mod 20 = 0 Then
       ' s104 = s104 & temp & "/" & vbCrLf
       ' Else
       ' s104 = s104 & temp & "/"
       ' End If
    Next i
   
      For i = 1 To UBound(cr)
        If i Mod 20 = 0 Then
          s104 = s104 & cr(i) & "/" & vbCrLf
        Else
          s104 = s104 & cr(i) & "/"
        End If
     Next
         Print temp
         MsgBox "ok"
     MsgBox s104  '显示数组
     paixu3 = s104
End Function

Private Function paixu0(a As String, B As String) As String
Dim i As Integer
Dim ak(), s105, cr(), f, bk()
s103 = a
Set f = CreateObject("Scripting.Dictionary")
s105 = Split(s103, "/")
s205 = Split(B, "/")
   j1 = UBound(s105)
   j2 = UBound(s205)
   Print j1
   For k = 1 To j1
      n1 = n1 + 1
       ReDim Preserve ak(1 To n1)
      ak(n1) = s105(n1)
    Next
    For k = 1 To j2
      n2 = n2 + 1
        ReDim Preserve bk(1 To n2)
       bk(n2) = s205(n2)
    Next
   
     n = 0
        For k = 1 To j1
           For i = 1 To j2
             n = n + 1
             ReDim Preserve cr(1 To n)
            m = Val(ak(k)) + Val(bk(i))
            f(m) = ""
            If InStr(Sqr(Val(m)), ".") = 0 And Val(ak(k)) <> 0 And Val(bk(i)) <> 0 Then
            s22 = s22 & "/" & m & "=" & m ^ (1 / 2) & "^2=" & Val(ak(k)) & "+" & Val(bk(i)) & "=" & Val(ak(k)) ^ (1 / 2) & "^2+" & Val(bk(i)) ^ (1 / 2) & "^2" & vbCrLf
            Else
            s22 = s22
            End If
      Next
    Next
      
         MsgBox "ok"
     MsgBox s22  '显示数组
     paixu0 = s22
End Function
回复 支持 反对

使用道具 举报

发表于 2023-2-12 12:02 | 显示全部楼层
王兄:你明白吗?

—— 10 是如下这个质数的原根,

449891379454319638085944566373848671425619884968118769200788173344623061138451477055318334934153734457472959621883841314831643410461516037935353038130998553870337  

既是说:这个质数的倒数:即有最大的完全的循环节:超大长度 !!!!!!!!!

它的循环节长达:449891379454319638085944566373848671425619884968118769200788173344623061138451477055318334934153734457472959621883841314831643410461516037935353038130998553870336  位的数字。


点评

ysr
这么长的循环节!这太长了我的程序无法验证了  发表于 2023-2-12 12:06
ysr
不懂啥叫原根,希望讲讲,我有空了学习一下!  发表于 2023-2-12 12:05
回复 支持 反对

使用道具 举报

发表于 2023-2-12 12:09 | 显示全部楼层
点评 ysr 不懂啥叫原根,希望讲讲,我有空了学习一下!  发表于 2023-2-12 12:05

佛说:方便法门:不懂就自己上网查看,四万八千法门之一,

点评

ysr
啊,好的,我学习一下!  发表于 2023-2-12 12:16
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-2-12 12:40 | 显示全部楼层
体对角线是整数的长方体也是无穷多的。
比如:
有15组/227648265625=477125^2=17582760000+94941015625+115124490000=132600^2+308125^2+339300^2
/227648265625=477125^2=17582760000+115124490000+94941015625=132600^2+339300^2+308125^2
/280566199225=529685^2=50317219225+115124490000+115124490000=224315^2+339300^2+339300^2
/378920269225=615565^2=50317219225+154213290000+174389760000=224315^2+392700^2+417600^2
/378920269225=615565^2=50317219225+174389760000+154213290000=224315^2+417600^2+392700^2
/227648265625=477125^2=94941015625+17582760000+115124490000=308125^2+132600^2+339300^2
/227648265625=477125^2=94941015625+115124490000+17582760000=308125^2+339300^2+132600^2
/227648265625=477125^2=115124490000+17582760000+94941015625=339300^2+132600^2+308125^2
/280566199225=529685^2=115124490000+50317219225+115124490000=339300^2+224315^2+339300^2
/227648265625=477125^2=115124490000+94941015625+17582760000=339300^2+308125^2+132600^2
/280566199225=529685^2=115124490000+115124490000+50317219225=339300^2+339300^2+224315^2
/378920269225=615565^2=154213290000+50317219225+174389760000=392700^2+224315^2+417600^2
/378920269225=615565^2=154213290000+174389760000+50317219225=392700^2+417600^2+224315^2
/378920269225=615565^2=174389760000+50317219225+154213290000=417600^2+224315^2+392700^2
/378920269225=615565^2=174389760000+154213290000+50317219225=417600^2+392700^2+224315^2
/平方数5219^2的拆分解有:1组/5219^2=2456^2+4605^2
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-2-12 13:22 | 显示全部楼层
ysr 发表于 2023-2-12 04:40
体对角线是整数的长方体也是无穷多的。
比如:
有15组/227648265625=477125^2=17582760000+94941015625+1 ...

这个其实才3组解,经过验证其面对角线都不是整数。

确实费力,可能完美长方体的确没有解。

点评

cz1
完美立方体只是理想  发表于 2023-2-12 16:29
cz1
悬崖立马  发表于 2023-2-12 16:28
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-2-12 17:19 | 显示全部楼层
完美立方体只是理想  发表于 2023-2-12 08:29 回复您的点评:

谢谢您关注和指点!没有研究,暴力搜索确实是很费劲呢!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-2-12 22:27 | 显示全部楼层
1192095027139831435378972373555374542548434522928934566261588802794461478820107257557971879193566787660338271269091252847766007958664820190942628877095360330391520961858561978152951275619165216383724898800072908531859872090587777950366646707022262255422333638072558771178909264044637759872245560131478544733306288670817621024169369046751940402878051182123152237806745422027269650583834500016868144634028614810612459085808549777060348499444424112601481559541629925304517694445302090588970045393786538457641227795889012615107205701838198610899348675040021610298651990864260550011187811829707318021031655725817190081817057997688050904365010914226020978726706612181566086231624302192274675860421407976283984692069337491996572011539956700724424227042604164965447721685865555761258175238684246571504899570166296064190979345403931267138601193310964067514063443058925376401024581833926142322079519175623373311829528503766960681010510344225783751816305785725925670729286782658307537390358549997597928520313239657711370667285920296764904436298196848982898562369160120177483876020686663424962922864418383392781125511751493963290387315250602812652848934261085261854997614021803179627382088986794328917853089308302357737465627430011206885350141555323997719283794076074497832950054913857425196335070732362387828328302493636298721370794840088200726868021848240819407974615051654073573482466010688562432341156615894942095772199223397773619485413108014657523615700511396845692716287463225358531520125007852925991283639580558980510796029799037812419794356455248216238408514991727456559163139754187621213712478361985138628134658577427704503007834567727865686176454144336243277031082566528141250862927787770845480284953626907396746987248040285182509152607594622840802980905141064776894051243158417627366114913430655176619011078496715718595478407403959162162236265366551935467604638823221009768861118902776663500064909574227763821656385045740090143841762259773480487132943510312158427521754840174031568822089711588105418870602018717560859133349299459396826142357842369989818316373198699710428196957463546032093820739663969869559770035332504509397463913197362179807746066593050825090691609427230526025043770749159006760728527418126019464766022144595643154936709886866605639348577288229384832474289788525918470475322858076437848397222275535360935975794748892931150670917041749432830988462546698832569418971691677019018564853486156736892587350465089914363469535355929176680761600902558986948109176354127563466245173654270745999954938807974114371742674844279606842291669175033286273395311943254369356100599945664308662966483175426439213346028350642354444899162469796782368628445795379511200507641746357225818441781595554820695198825357244057495696834975781993476140754474558486745035788480857278449437229819112692676829117827030111009081022288243093925286397850032776652771209665315744845410905023047369207207931055899362384132833718360158849046556436818427118826721000768543663997049326388823489231149967580975736932284114868846301161589315395323148947624470516092508004620083487183130710954745330951209577100712837063378805003413564110214907315207687391675815002587442256407004130490059536801940444601377132017252476070778496465378639779042802529577963789636712616764217789562564306076120274281992224440975977735479597114796247714008773580980743731398102160874892845558247968401852372620772041270806677591820225394175161436488812843822557608886257802708988265374181343641299560009646432959615515975086644446810090798301932159540938510188776592212782286612307928159108446434342445747457291109486418044122536401515724985107752873455655793528187623359483527213681722310284930977101881090189975839810084957036299174366905153224146170877523799283145576379733764649208752886211072583924383981914487924256189327578534326316701740089190165740547908332183955044666012524388774136497026378559551047476018922362784795972340057504279919171188779810869355564157183451384517045945607326520669199232815324333890081447508539274703159397529478423854870536691910073596370690531773325991617426188158133312702142063633317291707918121668317916961759856509905773232769786303853339886677062530033344090004128225078985236260717381329622262040845228752902900402963882024077220101154031432923256617647321785667751433404863008611813685560856272321234323801381232824145837090916200130343670267469169144336839324544652482245830737049705475042119697546418094190527541388645271024592562781386580562437586374735310200411439677667041421606698525008901969615166691243692476199524759396480434799971818873558414384867641093089150945814155007877959986853576040701938930640692664431329544775864081139709603267198682782678811571857163650686116253345465681789544444461663594836464231844362934284688743392366276442306832623778504929253332471845993720281816032795964710649330584997984763356620114958491847202504639335821871438988636115734784128875962870054608681098248538223275345460198152419601237060851563545877121467211485883270293361473133813978100975932435868565801201703313058578476748126890886230861361374905183741778865657208544984838339397322053889132539866935968880597735520128345719001982811658641681626465844748934654476620811141987696864062900655688027777721484401496174626662659637915440646601879480861689201037647195423594874611272712837540216815859346138261803856737357504411049624174161268761042525248274651064844843467790128809443967540206087004101879778885445985995506040166688263454908349946170949049500911535462502472107062531225439117143959660457957609816091923878056784969779795014491703197425360844184477659125910626490044277985593054759004281170870967276633876503485149416594654192902194682707815243867475749508886651194067944409747856404524572833608687416352182064381952968751732263086312567554535069230322653632140693916131108041598871229060701836410468358638927886953151738318929050437898226794409980314934816839963507587029195480100178897700722874503507322384099455057600243568855945210358876631635364834126533496141724839910578567824186964369352524314864244814356829566054760315585700724781855550746114396061413397932168124022705595562926941383376211004634507837011522671322830896671229609065548894790818913255178788624027891208930985208127274740829600387097097212846063696259909140901221456327658285483632356463116043417531402465228674224628611735007289065043446499311624726578104337640412402890448970405406484734686734712245545826338219055329064123149138359674858465537665255663256043057518704268999580740178954921284177215416220574773385715578285893713045799218057187897898968277516861290087622560779859029994660606373440695000937582738845477423925561771801302077714343752283607036364739593397843953092014358069344882985740278494856050353140270364767965259489881080176377611835500899852931236501758995817296178274473442685799632906257342560307789399247287357963367635073009263889665406344067473532212136171107598139521133043407875432745396039598058935509208755270401126863587254739859235035005274424447580184185834263266795754663505548546699070988424399657964094813039564561065246579491936252003166681230094248224940702213112496934825661466708421781817284495743207472337732918976996499889790814740922583799214004064805623541397228355219999349116115181652036283081084038765499768554750480801726821172513674224032564221437373347353960312533937455303887076175945119759654569008175745324633105933259606229554825225159928488603511935791854486205255160191941604509838539073239099810897965844808539405833612382910936315541831627783109753924168212714575614766385733578920803524500473440540028584054560758878157516999573110770781226362990789993029820376313405597339148531821725049719303344434519591068490270060783733338832865058538422355214992550002127889623444599112151465686796343558448955623428148200776936012988113739693891454740979804360516715973703814215327886333262324206216704040832592545615218189748864916917533131003018026980209911244948944358130141729369871681699183641404464372034738125928865543959517406554353036319678401371958324834689202348951725277409453528142323748452213619137321360089826744485040578318676326292144582530109638171741077436943239468168261352052722071508297040993644583781809416668564084584864231701311531027908971146889591615661887517966362177781184520455337384946438574383093803692705081769970244116027562667541505470583684296043448525873170864291544481893447447027171302744095463923449379413210296410852213237666912675343767423213881040598822710793097245271048434463324183209270017033845842801051380130136245732746838474580898131546017311842403130060070860512603245860181796875828878573558164044911941728487721361615708379224024815603760964443023996992105827520777322251776907045078954241790011745712302408759132789014796641105367729725354418792281375434473933828950814516808718696925694213558817312986814356114309038476416724473341357722326020585335347656037192411170741028918675634877028841427877118367764415319708561376144962570004290350002676253335928921572425792978631815848021235503975458101257266862273566019951140793217646868789557438297459418999109862643234687867202521328666201829079083941728964559372471640953375613765025910781462397806163679654025412843369561498573121857264978763423139017472894441296651297780211770913191282495169332926272618065985559199260233509958106204461224903866476773876143472451220365560708452537868984703394240249824970647640194249500482381252732132790326101170959182308642224029703193372237751909050778837404556401770833320915676800626755881469037775464848515120473719490264934775116637557692928957216067104459591733679295204809674280299449502437417097241456344347615863589996558421656647306646060906757545633695662669532304165907202793126332389710646350347430135184768172684024603410846133553028499535023334664108748630431825694726159678983114331569072429667287470020300186217164189513068520549274473085057291490956826728868595722786884522827606488954703130787248827067900421441354944744607349528103223031562027148056891066237210459489451925966607272518764469798451301666441559389041761830619270716793626773882103947586919522737603314405645857416136412864469643478948138263472789775353268420580185497138793120610333580375159457611067791702374879792117700787247634972873281609919565772233794153560674597039098213490629477434415998010631818709049300639570903010790963395172468136193995822660605896602684145005008587256528001775744752427492906140517247648085918580148065354940929903262680642629818850431770858354911246737086898839888882438330242032245455227116156428139975321248748151209624784513922656636220162308506325196609252588604549058465466139554034866156934780361855677108187272883545548103239720892407105696986371850440234733047604049928277602692132041690424127145040890647573436927980651820871509679871225126788246849024621888319054220415747909095124772414158131166931093211936733609557645721994141329779618584427686502372924756273191463693613458180650795669786339616190700872005591402515296665364501532020924128754369177286345874689593356120627142120257831080849911302169505660842050627560545612357161683729321472623597306485128078093668389919501399102328602663164132530926223265331861970177835544053692913698399719714617218882832913696015529660337556012074968948904780575240686966217099816381602969651764008576885301265659211264630433256208758727476705569098417338879118345591447814907696678096076421874323858601794126857745989106874061001648309794026244925698505100915016379981720414853837824769898837623901886764562305025407717360944797297949727683772475312606059204445846878016372948359754728832356033961833647192085728798619744693776417570860810627002645139655720571971962401799682020572460721362927012909077839394520630575353935993795383802742605345139524590118986580943907995059481369521682599215386895037105745862267963173323583585471365698633847177947481776741343870181805220494068552378211697718556616109519200657368881765988646725380525673375737742908733323931677219290529412977837880559946107768013062500469387416936308627680470372087428726128446093403267985465500591100319207285417232663451427432466922641258194312204680808807865633724272950183660120356298130091661378731808778897724564775046303951091678902528707734419824635668937567956867140890015763072543869991070016151695522717576117949696689301769676988739351164134438278266689062158576533633232652960991193636406009923237424917384834381641831949648767081678655765037116474717512221656241994336833364069516783088653842187837698169406955373803449517696233444631298717198462245098790703041618540797008509055094221402802591566905200907947256470781214442040518594715466586589670043593723047476495760373640728546491646453702068988208153620040929390661818972502301637473650229543857950910242039398025389955145040413809562580995406500231922087530054205752979075275198117252797936435824219866192101583662480704451866957903429097108418539318810675401703241532876848358240768147888448038902352277670403129583232849656670671708592847453679061554184354873338115223852200243831116851181121792415009287016308932856797319884276183145373723579150877864738460907568170252150748045590005379924857482059267865302321855405310521085001978281697538550267011404653915144053359127090800566912711106618237408824101967993917454333521724084122331361171056934100867690207404269106869292621539750468284729036204283602744822641890004676588791469558720991708621457734330417508633450210303444212873362672381411280771399923682076362507991507038188644984921786049221842089609067933084845098576125936733371138640294027854253985143873352777992686020170486278211375852899288355031648334828021814862158648059334861042847113931978819332395790330988760570455617527277816434770407862200490594787469126228915862290612978839240382743566173731399294255902032676993626940775407747163320475793735612158081814196969622915308920101380529488079824590369326536643272596489065567968311253150558144852182004777201611760160494137693889785807941808596507185412380836690968318524930223697823937816508680299544870039588283756286662137500293553400433183490962071946988010981102552001271250136941916242688136139159451412173650575251415821461358299300013721013762379459821211972019622360984732481358912036857670887120164251621219434534492256329517953725970493502307240320277786751604232080397749658375367597402806406270992048368540469182376591640576673585188839177201707127762665324208720103597826238559911060174215151456269245629153780616129546397113318049880355382601110817988189437728114834037126369106237482257155639807533873678219935095194152344737669356470149404077656407933964611228605321536043052750324160440254998663065427062679045222482483057647450531930682535199883937628157666011451503249710648734537484414847638930628771714159931230422074357404155857841714337553389465909241275622741501465144393106209825652525995718233081519153450405807028663805718074532880543852824901625338122853260373938752303276604312546812081596997255678038021394052614067698838172265599248884765299735009196417086870229608231082375792936908489898127135265711425026819157873078357717438430974062038770983405679593705404470094090868397119755363026910472352157268805388460257876380460942615764050061792245731793162452869032983242839412998103496021323242169455592850910754640259695517472357998534438373634291233345091363951022537390954597511167844238002725844489057938560137558229371719428991250380129301779213748956469815617470057255132058498964009816664129491083904058761701753798282977848609415190366250931473251831385787819244538386830783183783025353596246712648950783522338013061308374360277104873248708096816712886177693923164468701723876697796638840387178159674691572233865679262302986925220951833042799906968904082007554783024995967738570699520169830625946448945609829920226192878829620175874547734047890987201310160118627760340738905797432298837242431478079816245704136557823224943682450680346513414108897642310218173655582050529808753386890983982653586841082884817513497197921033956469219569956487339414369012777232129392855273822439591478570959396885747109199361561587264991876468437555618683609992760406900179803692943500775398210403103357142252580379093371200629235439125488624850436777657468898538765678582808821455517033667028546980405414829399876713532293198632953106677126903164809640901638689587157226486014996793860424507423354548253801322820167815985350582630484039456914884295852713321530797834630908902124587520219421779075465933321595170966096459799635052028391412004373081397559757637544222255150535971884677203912503562874012364171202488903681463625664041633680403853184914323534351946744823595566026388453939772736619836008255496481948760656286459481345679782056418758187457658274754777112204633125006780040466857791288717905374596192710744221349158315345612786315893499660789360027360965062913411104818173917842956500571669170264906164835986201738479861879101775470570571250744910380084002168182435361925414667274953022515217987092710303146189116577714522566537678011080046439253877259273396623247784223170679516815275219574963286453401661041368916098325428352525864587780096137695558718845937572606037746735358361050536126857030732090590162140420926369893020200169444387157655640224767133177160937477834483089118759248422232429204754599490045589290122908573583198040481878188630679781460371244617541940585268590334517361850789518575999574660494316508143856782657115442363218718562218956146757865115162936144356985730503315633503735370162791304811188240983917088360348392155871670016652375434116305320808865086195026984859081850794286956108133986235832397638078280827309180454934456827265311357935711030443365174588873247277582784145088455239156316202252272818576369124118907664253111338218459281550553233420670188671687850393981445994578590235573474598183509439544867655398229476623791379555546442651348086621916214
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-27 04:32 , Processed in 0.103836 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表