|
本题所用符号诠译如次:\(N_∞=\displaystyle\lim_{k→∞} N_k\);\(A_∞=\displaystyle\lim_{k→∞} A_k\);\(A_{∞-1}=\displaystyle\lim_{k→∞} A_{k-1}\),并请elim用现行数学术语论证你的观点!谁说ω∈\(\mathbb{N}_{elim}\)了?ω∈\(\mathbb{N}_{cantor}\)。所以ω亦是皮亚诺意义下的无穷正整数!也请elim根据现行数学理论指出春风晚霞下面论述中哪里不能自圆其说?那个分论点又是在喊口号?
1、\(\color{red}{自然数集是无限集。}\)
根据周民强《实变函数论》P23页定理1.9,因为集合\(A=\{x|x=2n,n∈N\)与N对等,所以自然数集N集是无限集。再由自然数集N的良序性,必存在自然数n→∞。
2、\(\color{red}{现行数学极限集包含超限数。}\)
现行数学教科书单减集列的极集定义为\(\displaystyle\lim_{n→∞} A_n=\displaystyle\bigcap_{n=1}^∞ A_n\).所以对于e氏单减集列\(\{A_n=\{m∈N:m>n\}\}\)的极限集\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\bigcap_{n=2}^∞ A_n=\)…\(\displaystyle\bigcap_{n=k}^∞ A_n=\)…\(\displaystyle\bigcap_{n=∞-1}^∞ A_n=\)\(\{∞+1,∞+2,…\}=\)\(\{ω+1,ω+2,…\}\)正是周民强《实变函数论》P9页极限集定义的直接应用。
3、\(\color{red}{只要A_∞中有元素,N_∞就不等于空集}\)
在现行教科书中,定集的定义:不包含任何元素的集合叫空集,记为Φ(参见周民强《实变函数论》P3页3~4行)。所以不能因为\(A_n\)中的元素\(ω+j\notin\mathbb{N}\)就把\(N_∞\)说成是空集!
4、\(\color{red}{《近世代数》中\mathbb{N}不是域}\)
什么是域?域的概念是建立在环的概念之上的。北师大张禾瑞《近世代数基础》是这样定义域的,定义:一个除环叫做一个域。(参见张禾瑞《近世代数基础》P90页第19行);由于群环域理论是《代数学》重点讨论的内容。各教科书域的定义大同小异。如北工大姚海楼《基础代数》P59页1~2行定义4;北大徐竞《近似代数初步》P36页第10~12行;北大《高等代数》P390页定义7;……无论是哪本教科书集合F是域的必要条件都要求F必须是除环。而集合\(\mathbb{N}\)连环都不是,当然也不可能是域了!
5、\(\color{red}{e氏[逐点排查]挂一漏万}\)
由e氏定义的单减集列\(\{A_n:=\{m∈N:m>n\}\}\),对\(\forall k∈\mathbb{N},都有A_k=\{k+1,k+2,…\}\),e氏的逐点排查法【\(\forall m∈\mathbb{N},m\notin A_m\),由m的任意性知\(\forall n∈\mathbb{N}\),当m≤n时都有\(m\notin \displaystyle\bigcap_{n=1}^∞ A_n\)】在排出k≤n的自然数不是\(\displaystyle\bigcap_{n=1}^∞ A_n\)的元素的同时。elim始终无视\(\forall k>n,k∈A_n\)的情形,从而致使每个\(A_n\)均为空集!
6、\(\color{red}{若以自然数集N为全集,N_\nu=A_\nu≠\phi}\)
若以自然数集N为全集,按elim【自然数均有限数】的认知,N中n只能趋向某一有限数β,β∈N,因自然数集N对加法运算封闭,\(\forall j∈N\)有β+j∈N,所以\(\color{red}{N_β=A_β=\{β+1,β+2,…\}≠\phi !}\)(其实,这种情形elim用数学完全归纳法亦可证明\(N_β=A_β≠\phi\))
7、\(\color{red}{elim的【逐点排查】非集论基础!}\)
elim为\(N_∞=\phi\)量身定制的【逐点排查】法既非交的定义,也非求交运算的运算规律,更不是《集合论》的外延公理。所以运用【逐点排查】必然收到【骤变】结果。如用此法,根据周民强《实变函数论》P9页例5可“证明”\(N=\phi\)!现戏证如下:
【证明:】\(\because\quad\forall n∈N,恒有n∈[n,∞)\)
\(\therefore\quad N\subseteq [n,∞)\)
又\(\because\quad N=\displaystyle\lim_{n→∞} N=\)\(N\subseteq\displaystyle\lim_{n→∞} [n,∞)=\phi\)!
8、\(\color{red}{Cantor正整数才是单减集列\(\{A_n\}\)的默认全集}\)
Cantor《集合论》中没有自然数集的概念,只有无穷实整数的概念。Cantor把∞分为适当无穷和不适当无穷两种情形。把适当∞记为ω,而∞则表示不适当穷。〖数\(\nu\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见Cantor《超穷数理论基础个》P42页)。并在此基础上给出了有限基数的无穷数列1,2,3,…,\(\nu\),ω+1,ω+2……。从这个数列的表示中,\(\nu\)就是自然数集N那个趋向无穷且既有前驱又有后继的那个\(\displaystyle\lim_{n→∞} n\),所以elim的\(\mathbb{N}_{elim}\subset\mathbb{N}_{Cantor}\),并且在\(\mathbb{N}_{cantor}\)中Peano axioms永远成立!因此从周氏极限集定义导出\(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\)
\(\displaystyle=\{\lim_{n\to\infty}(n+1),\lim_{n\to\infty}(n+2),\ldots\}=\{\infty+1,\infty+2,\ldots\}\)也就再正常不过了。
总之,只有承认集合论默认全集是\(\mathbb{N}_{cantor}\),才能正确理解现行教科书关于极限集的定义,才能有效肃清elim【逐点排查】造成的混乱!
至于elim是孬种,良种、野种还是杂种,我并不感兴趣,还是留待elim自酌吧!
|
|