数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\color{red}{\textbf{蠢可达}\color{navy}{\textbf{失算}}\textbf{集列交}}\)I

[复制链接]
发表于 2025-9-5 08:42 | 显示全部楼层
elim 发表于 2025-9-5 08:12
\(\mathbb{N}_{\infty}:=\small\displaystyle\bigcap_{n=1}^\infty A_n\)(\(\small A_k=\{m\in\mathbb{N}: ...


        elim认为春风晚霞【无法调和\(\displaystyle\lim_{n \to \infty}n\)\(\in\mathbb{N}\implies\)\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)与\(\mathbb{N}\)无最大元的矛盾。】
其实不然,首先我们已经证明定理〖若\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\),则\(\mathbb{N}=\phi\)〗,其次,我们也可证明〖\(\displaystyle\lim_{n \to \infty}n\)\(\in\mathbb{N}\)\(\color{red}{不与}\)\(\mathbb{N}\)无最大元的矛盾。〗证明如下:
      〖证明:〗因为\(\forall n\in\mathbb{N}\),恒有\(10^n\in\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} 10^n=\)\(10^{\displaystyle\lim_{n \to \infty}n}\)\(\in\mathbb{N}\),易知\(10^{\displaystyle\lim_{n \to \infty}n}>n\),从而\(\displaystyle\lim_{n \to \infty}n\ne Max\mathbb{N}\),因此\(\displaystyle\lim_{n \to \infty}n\)\(\in\mathbb{N}\)\(\color{red}{不与}\)\(\mathbb{N}\)无最大元的矛盾。
回复 支持 反对

使用道具 举报

发表于 2025-9-5 14:40 | 显示全部楼层
elim 发表于 2025-9-5 14:06
\(\mathbb{N}_{\infty}:=\small\displaystyle\bigcap_{n=1}^\infty A_n\)(\(\small A_k=\{m\in\mathbb{N}: ...


       【定题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-2),(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-2)\),\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
elim出自反对春风晚霞极限可达(其实是反对威尔斯特拉斯极限定义)的需要,釆用野蛮地强盗逻辑,强行定丈\(\displaystyle\lim_{n \to \infty}n)\notin\mathbb{N}\),其实就算你阴谋得逞,你也不能证明【自然数皆有限数】!故此你还是清醒点吧,伟大的民科领袖!
回复 支持 反对

使用道具 举报

发表于 2025-9-5 21:33 | 显示全部楼层
elim 发表于 2025-9-5 21:30
\(\mathbb{N}_{\infty}:=\small\displaystyle\bigcap_{n=1}^\infty A_n\)(\(\small A_k=\{m\in\mathbb{N}: ...


       【定理】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-2),(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-2)\),\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
elim出自反对春风晚霞极限可达(其实是反对威尔斯特拉斯极限定义)的需要,釆用野蛮地强盗逻辑,强行定丈\(\displaystyle\lim_{n \to \infty}n)\notin\mathbb{N}\),其实就算你阴谋得逞,你也不能证明【自然数皆有限数】!故此你还是清醒点吧,伟大的民科领袖!
回复 支持 反对

使用道具 举报

发表于 2025-9-6 05:16 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-9-6 15:32 编辑
elim 发表于 2025-9-6 00:17
\(\mathbb{N}_{\infty}:=\small\displaystyle\bigcap_{n=1}^\infty A_n\)(\(\small A_k=\{m\in\mathbb{N}: ...



【原文】
        对任意自然数m,\(m\notin A_m:=\{k\in\mathbb{N}:k>m\},\)所以m不是\(\{A_n\}\)的公共元.即\(\mathbb{N}_{\infty}:=\displaystyle\bigcap_{n=1}^{\infty}A_n\)不含任何自然数.所以\(\mathbb{N}_{\infty}=\phi\).集论白痴不会算集列交.
〖评述〗
        elim你\(\forall m∈N,m\notin A_m\),再由m的任意性知\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)是哪门子数理逻辑?根据你所给的集列\(\{A_n:=\{m∈N:m>n\}\}\),虽然\(\forall m∈N,\)\(m\notin A_m\)不也有\(\forall m∈N,m\notin A_m\),但\((m+j)(j∈\mathbb{N}^+)\)\(∈A_m\)吗?真他娘的一叶障目,不见泰山。一个连集合交并的定义,集合交并运算规律甚至连自己所给集列定义式都不用的纯符号演译会是正确的谓词逻辑演译吗? elim你说说,倒底谁是【集论白痴不会算集列交】呢?
回复 支持 反对

使用道具 举报

发表于 2025-9-6 07:07 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-9-6 15:32 编辑
elim 发表于 2025-9-6 06:05
\(\mathbb{N}_{\infty}:=\small\displaystyle\bigcap_{n=1}^\infty A_n\)(\(\small A_k=\{m\in\mathbb{N}: ...



定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-9-6 07:35 | 显示全部楼层
elim 发表于 2025-9-6 07:24
\(\mathbb{N}_{\infty}:=\small\displaystyle\bigcap_{n=1}^\infty A_n\)(\(\small A_k=\{m\in\mathbb{N}: ...


        elim你根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。你根本就不知道纯粹数学的对与错!像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是单调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-9-6 11:17 | 显示全部楼层
elim 发表于 2025-9-6 11:08
\(\mathbb{N}_{\infty}:=\small\displaystyle\bigcap_{n=1}^\infty A_n\)(\(\small A_k=\{m\in\mathbb{N}: ...


       【定理】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-2),(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-2)\),\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
elim出自反对春风晚霞极限可达(其实是反对威尔斯特拉斯极限定义)的需要,釆用野蛮地强盗逻辑,强行定丈\(\displaystyle\lim_{n \to \infty}n)\notin\mathbb{N}\),其实就算你阴谋得逞,你也不能证明【自然数皆有限数】!故此你还是清醒点吧,伟大的民科领袖!
回复 支持 反对

使用道具 举报

发表于 2025-9-6 11:59 | 显示全部楼层
elim 发表于 2025-9-6 11:52
\(\mathbb{N}_{\infty}:=\small\displaystyle\bigcap_{n=1}^\infty A_n\)(\(\small A_k=\{m\in\mathbb{N}: ...


       【定理】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-2),(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-2)\),\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
elim出自反对春风晚霞极限可达(其实是反对威尔斯特拉斯极限定义)的需要,釆用野蛮地强盗逻辑,强行定丈\(\displaystyle\lim_{n \to \infty}n)\notin\mathbb{N}\),其实就算你阴谋得逞,你也不能证明【自然数皆有限数】!故此你还是清醒点吧,伟大的民科领袖!
回复 支持 反对

使用道具 举报

发表于 2025-9-6 15:30 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-9-6 15:34 编辑
elim 发表于 2025-9-6 12:54
\(\mathbb{N}_{\infty}:=\small\displaystyle\bigcap_{n=1}^\infty A_n\)(\(\small A_k=\{m\in\mathbb{N}: ...



【原文】
        对任意自然数m,\(m\notin A_m:=\{k\in\mathbb{N}:k>m\},\)所以m不是\(\{A_n\}\)的公共元.即\(\mathbb{N}_{\infty}:=\displaystyle\bigcap_{n=1}^{\infty}A_n\)不含任何自然数.所以\(\mathbb{N}_{\infty}=\phi\).集论白痴不会算集列交.
〖评述〗
        elim你\(\forall m∈N,m\notin A_m\),再由m的任意性知\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)是哪门子数理逻辑?根据你所给的集列\(\{A_n:=\{m∈N:m>n\}\}\),虽然\(\forall m∈N,\)\(m\notin A_m\)不也有\(\forall m∈N,m\notin A_m\),但\((m+j)(j∈\mathbb{N}^+)\)\(∈A_m\)吗?真他娘的一叶障目,不见泰山。一个连集合交并的定义,集合交并运算规律甚至连自己所给集列定义式都不用的纯符号演译会是正确的谓词逻辑演译吗? elim你说说,倒底谁是【集论白痴不会算集列交】呢?
回复 支持 反对

使用道具 举报

发表于 2025-9-6 19:36 | 显示全部楼层
elim 发表于 2025-9-6 19:01
\(\mathbb{N}_{\infty}:=\small\displaystyle\bigcap_{n=1}^\infty A_n\)(\(\small A_k=\{m\in\mathbb{N}: ...


        elim你根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。你根本就不知道纯粹数学的对与错!像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是单调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-9-9 22:23 , Processed in 0.098397 second(s), 12 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表