数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

滚驴搅局03\(\Huge\color{green}{\mathbb{N}\textbf{没有无穷元}}\)

[复制链接]
发表于 2025-11-17 14:40 | 显示全部楼层
elim,自然数集\(\mathbb{N}\)的真像是什么??老子在什么地方掩盖了什么真像?!皮亚诺公理哪条哪款说了\(\omega=\mathbb{N}\),冯\(\cdot\)诺依曼在什么地方说了\(\omega=\mathbb{N}\)?康托尔实正整理论中\(\omega\)是最小超穷数。无论是康托尔、还是皮亚诺或冯\(\cdot\)诺 依曼他们在哪本著述中说到了\(\omega\)是最小无穷大?由于无穷大量与无穷小量互为倒数关系,那么因为\((\tfrac{1}{\displaystyle\lim_{n \to \infty}n})^{-1}\)=\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)又有什么错?这个关系就是在柯西极限理论中也是存立的!所有小于超穷数\(\omega\)正整数都是自然数,老夫利用这个性质不是证明了皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……也成立吗?elim,你的\(\displaystyle\lim_{n \to \infty}n\)大于\(\{n\}\)所有数、\(\displaystyle\lim_{n \to \infty}n=\)\(Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=\)\(Max\mathbb{N}\)、……依据是什么?像你这样毫无根据的杜撰,才是真正是他妈的畜生不如!
回复 支持 反对

使用道具 举报

发表于 2025-11-17 15:00 | 显示全部楼层
elim,自然数集\(\mathbb{N}\)的真像是什么??老子在什么地方掩盖了什么真像?!皮亚诺公理哪条哪款说了\(\omega=\mathbb{N}\),冯\(\cdot\)诺依曼在什么地方说了\(\omega=\mathbb{N}\)?康托尔实正整理论中\(\omega\)是最小超穷数。无论是康托尔、还是皮亚诺或冯\(\cdot\)诺 依曼他们在哪本著述中说到了\(\omega\)是最小无穷大?由于无穷大量与无穷小量互为倒数关系,那么因为\((\tfrac{1}{\displaystyle\lim_{n \to \infty}n})^{-1}\)=\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)又有什么错?这个关系就是在柯西极限理论中也是存立的!所有小于超穷数\(\omega\)正整数都是自然数,老夫利用这个性质不是证明了皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……也成立吗?elim,你的\(\displaystyle\lim_{n \to \infty}n\)大于\(\{n\}\)所有数、\(\displaystyle\lim_{n \to \infty}n=\)\(Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=\)\(Max\mathbb{N}\)、……依据是什么?像你这样毫无根据的杜撰,才是真正是他妈的畜生不如!
回复 支持 反对

使用道具 举报

发表于 2025-11-25 16:05 | 显示全部楼层
任何一本教科书都支持\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),及与之逻辑等价的任何命题!!
回复 支持 反对

使用道具 举报

发表于 2025-11-26 05:00 | 显示全部楼层

         为揭露elim吃屎成痴不识自然数的危害,现在我们根据Weierstrass 极限定义直接证明\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……\(\in\mathbb{N}\)!
        〖证明:〗根据Weierstrass极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\)\(对\forall \varepsilon>0\iff \exists\)正整数\(N_\varepsilon\)\((=[\tfrac{1}{\varepsilon}]+1)\),当\(n>N_{\varepsilon}\),有\(|x_n-a|<{\varepsilon}\)。特别的,令\(\varepsilon=(\displaystyle\lim_{n \to \infty}n)^{-1}\),则\(N_\varepsilon\)\(=\displaystyle\lim_{n \to \infty}n\)\(\in\mathbb{N}\)
        同理:
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2n)^{-1}\),则\(N_\varepsilon\)\(=\displaystyle\lim_{n \to \infty}2n\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2^n)^{-1}\),则\(N_\varepsilon\)\(=\displaystyle\lim_{n \to \infty}2^n\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}10^n)^{-1}\),则\(N_\varepsilon\)\(=\displaystyle\lim_{n \to \infty}10^n\)\(\in\mathbb{N}\);
……      
回复 支持 反对

使用道具 举报

发表于 2025-11-26 16:20 | 显示全部楼层
      每一个无穷小数\(0.a_1a_2\cdots\)都至少对应着二个无穷元——无穷大自然数:\[f\left( 0.a_1a_2\cdots\right)=\begin{cases}
a_1a_2a_3\cdots.0\in\mathbb{N}\\
\cdots a_3a_2a_1.0\in\mathbb{N}
\end{cases}\]
回复 支持 反对

使用道具 举报

发表于 2025-11-26 21:44 | 显示全部楼层

       皮亚诺公理及冯诺依曼在什么地方说过  ω=N是最小无穷序数?!在现行数学中 ω是最小超穷数!elim为了圆谎,无视数学事实。你骗你的信徒可能凑效,骗广大数学爱好者只能是自取其辱!
回复 支持 反对

使用道具 举报

发表于 2025-11-27 02:41 | 显示全部楼层

       皮亚诺公理及冯诺依曼在什么地方说过  ω=N是最小无穷序数?!在现行数学中 ω是最小超穷数!elim为了圆谎,无视数学事实。你骗你的信徒可能凑效,骗广大数学爱好者只能是自取其辱!
回复 支持 反对

使用道具 举报

发表于 2025-11-27 14:21 | 显示全部楼层

        elim发贴(其实仍是宿贴)说:【\(\displaystyle\lim_{n \to \infty}n\)不满足皮亚诺公理】,为进一步揭露elim反现行数学的本质,故把elim的狗屁帖文抄录于后,抄录文本中的序号为春风霞所加,其目的是为了叙述方便。
        【原文】
        【定理】\(\displaystyle\lim_{n \to \infty}n\)不满足皮亚诺公理。①
        【证】由Stolz公式,\(\displaystyle\lim_{n \to \infty}\tfrac{1}{n}=0\).故\(\displaystyle\lim_{n \to \infty}n=\)\(\infty\),且\(\tfrac{\displaystyle\lim_{n \to \infty}(n\pm k)}{\displaystyle\lim_{n \to \infty}n}=\)\(\displaystyle\lim_{n \to \infty}\tfrac{((n+1)\pm k-(n\pm k)}{(n+1)-n}=1\)
即\((\displaystyle\lim_{n \to \infty}n)\pm k=\)\(\displaystyle\lim_{n \to \infty}(n\pm k)=\) \(\displaystyle\lim_{n \to \infty}n\)\((\forall k\in\mathbb{N})\),\(\displaystyle\lim_{n \to \infty}n\)前趋后继相等,Peano公理对\(\displaystyle\lim_{n \to \infty}n\)不成立。②
        【推论】\(\displaystyle\lim_{n \to \infty}n\)tolz不是自然数。③
        称前趋,后继之比可为1,唯狗屎食家春风晚霞.④】
        〖批驳〗
        ①、现行数学任何一本教科书都支持\(\displaystyle\lim_{n \to\infty}n\in\)\(\mathbb{N}\),所以elim的定理是反现行数学的。
        ②、elim运用Stolz公式算得了\(\tfrac{\displaystyle\lim_{n \to \infty}(n\pm k)}{\displaystyle\lim_{n \to \infty}n}=\)\(\displaystyle\lim_{n \to \infty}\tfrac{((n+1)\pm k-(n\pm k)}{(n+1)-n}=1\),从而断言【\(\displaystyle\lim_{n \to \infty}n\)前趋后继相等】,不难看出\(\color{red}{elim的论证是错误的!}\)其错误有二:ⅰ:elim在\(\tfrac{\displaystyle\lim_{n \to \infty}(n\pm k)}{\displaystyle\lim_{n \to \infty}n}=\)\(\displaystyle\lim_{n \to \infty}\tfrac{((n+1)\pm k-(n\pm k)}{(n+1)-n}=1\)论证过程中已用到了\(\displaystyle\lim_{n \to \infty}n+1\)\(-\displaystyle\lim_{n \to \infty}n=1\)这一性质,这里又说【\(\displaystyle\lim_{n \to \infty}n\)前趋后继相等】前后矛盾,陈述不自洽!ⅱ:elim虽然用Stolz公式算出了\(\tfrac{\displaystyle\lim_{n \to \infty}(n\pm k)}{\displaystyle\lim_{n \to \infty}n}=\)\(\displaystyle\lim_{n \to \infty}\tfrac{((n+1)\pm k-(n\pm k)}{(n+1)-n}=1\),但仍不能得到\((\displaystyle\lim_{n \to \infty}n)\pm k=\)\(\displaystyle\lim_{n \to \infty}(n\pm k)=\) \(\displaystyle\lim_{n \to \infty}n\)\((\forall k\in\mathbb{N})\);因为两个无穷大量的比值等于1,只能说明这两个无穷大量是同阶无穷大!并不以说这两个无穷大量相等!(参见菲赫金哥尔茨《微积分学教程》p137;《数学分析原理》p115;同济大学《高等数学》P52;华东师大《数学分析》P64,吉林师大《数学分析讲义》P52……[关于无穷大量的比较])。
        ③、由于elim论证过程是错误的,所以elim的定理及推论都是错误的!
        ④、由\(\displaystyle\lim_{n \to \infty}n\)前趋后继的比等于1,就断定\(\displaystyle\lim_{n \to \infty}n\)不是自然数,非狗屎食家elim莫属!

回复 支持 反对

使用道具 举报

发表于 2025-11-27 14:41 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-11-27 14:53 编辑


       皮亚诺公理及冯诺依曼在什么地方说过  ω=N是最小无穷序数?!在现行数学中 ω是最小超穷数!elim为了圆谎,无视数学事实。你骗你的信徒可能凑效,骗广大数学爱好者只能是自取其辱!
回复 支持 反对

使用道具 举报

发表于 2025-11-27 14:54 | 显示全部楼层

       皮亚诺公理及冯诺依曼在什么地方说过  ω=N是最小无穷序数?!在现行数学中 ω是最小超穷数!elim为了圆谎,无视数学事实。你骗你的信徒可能凑效,骗广大数学爱好者只能是自取其辱!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-11-28 10:05 , Processed in 0.084731 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表