数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge^\star\;\underset{n\to\infty}{\lim}n=\sup\mathbb{N}\not\in\mathbb{N}\)

[复制链接]
发表于 2025-10-8 05:27 | 显示全部楼层

        elim根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。你根本就不知道纯粹数学的对与错!像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是单调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-10-8 07:42 | 显示全部楼层
elim:康托尔、皮亚诺、冯\(\cdot\)诺依曼谁说了\(\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)?周民强、菲赫金戈尔茨、陶哲轩谁的理论又推出了\(\displaystyle\lim_{n \to \infty}n=\)\(Sup\mathbb{N}\)?谁的理论又能推导出自然数\(\displaystyle\lim_{n \to \infty}(n-1)=\)\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\lim_{n \to \infty}n^n=\)\(Max\mathbb{N}\)?
回复 支持 反对

使用道具 举报

发表于 2025-10-9 04:07 | 显示全部楼层

        elim根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。你根本就不知道纯粹数学的对与错!像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是单调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-10-13 22:30 | 显示全部楼层
\(\huge\color{red}{\textbf{滚驴连何谓上下极限都不知. 只会吃狗屎啼猿声}}\)

【定理】\(\lim n=\sup \mathbb{N}\not\in\mathbb{N}\)
【证明】\(\;\because\;\underline{\lim} n=\underset{\;\;\small n\in\mathbb{N}\;n\le k\in\mathbb{N}}{\sup\;\inf} k{\small=\sup\mathbb{N}}\ge\overline{\lim} n.\)
\(\qquad\qquad\therefore\;\lim n=\sup\mathbb{N}.\)
\(\qquad\)因为\(\mathbb{N}\)无最大元, 故 \(\lim n=\sup\mathbb{N}\not\in \mathbb{N}\quad\small\square\)
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-10-14 04:19 , Processed in 0.093490 second(s), 12 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表