数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge^*\textbf{ 据}\text{Weierstrass}\textbf{定义,}\lim n\textbf{不存在}\)

[复制链接]
发表于 2025-11-4 09:41 | 显示全部楼层
elim,根据威尔斯特拉数列极限的\(\varepsilon—N\)定义,\(\infty=\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)\(( N_{\varepsilon}\in\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty}n\to\infty \)即指\(\displaystyle\lim_{n \to \infty}n\in\)\(\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)之意.由于\(\{n|n>N_{\varepsilon}(=[\tfrac{1}{\varepsilon}]+1\}\subset\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\);还有春氏可达的数学表达式是:\(\displaystyle\lim_{\color{red}{n→∞}}\color{Magenta}{a_n=a}\Longleftrightarrow\color{Magenta}{a_n=a}(\color{red}{n→∞})\)与你的\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\)有什么关系?若\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\),数学中(当然也包括理论力学、分析化学……)中的\(\displaystyle\lim_{n \to \infty}\)还有数学意义吗?还具可操作性吗?再者春氏可达的先决条件(即已知条件)是“极限存在”,你的\(\displaystyle\lim_{n \to \infty}a_n\ne a\)又是什么东西?通俗地说,人家的命题是:人都不吃自己拉的屎。你偏要定义:elim要吃拉的屎。在这样的定义下,你最多只能证明elim要吃自己拉的屎。除此之外,你还能证明什么呢?
回复 支持 反对

使用道具 举报

发表于 2025-11-5 08:22 | 显示全部楼层

      elim,\(\infty=\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)\(( N_{\varepsilon}\in\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty}n\to\infty \)即指\(\displaystyle\lim_{n \to \infty}n\in\)\(\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)之意.由于\(\{n|n>N_{\varepsilon}\)\((=[\tfrac{1}{\varepsilon}]\)\(+1\}\)\(\subset\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\);来源于威尔斯特拉数列极限的\(\varepsilon—N\)定义: 对\(\forallε>0, \exists正整数N\),当\(n>N\)时,有\(|x_n-a|<\varepsilon\)\(\iff\)\(\displaystyle\lim_{n \to \infty}x_n\)\(=a\)(这个威氏极限定义的符号表示参见同济大学《高等数学》第七版 上册P21页第25行);来源于无穷大量与无穷小量的相互关系;来源于菲赫金哥尔茨关于\(\infty\)的定义;来源于恩格斯关于无穷大量与无穷小的辩证关系(参见恩格斯《自然辩证法》2018年中文版P187页),春风晚霞也想问问你他妈的\(\infty=Sup\mathbb{N}\)来源何处?春风晚霞也想问问究竟是他妈的哪个王八蛋在反现行数学?!

回复 支持 反对

使用道具 举报

发表于 2025-11-5 08:59 | 显示全部楼层

      elim,\(\infty=\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)\(( N_{\varepsilon}\in\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty}n\to\infty \)即指\(\displaystyle\lim_{n \to \infty}n\in\)\(\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)之意.由于\(\{n|n>N_{\varepsilon}\)\((=[\tfrac{1}{\varepsilon}]\)\(+1\}\)\(\subset\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\);来源于威尔斯特拉数列极限的\(\varepsilon—N\)定义: 对\(\forallε>0, \exists正整数N\),当\(n>N\)时,有\(|x_n-a|<\varepsilon\)\(\iff\)\(\displaystyle\lim_{n \to \infty}x_n\)\(=a\)(这个威氏极限定义的符号表示参见同济大学《高等数学》第七版 上册P21页第25行);来源于无穷大量与无穷小量的相互关系;来源于菲赫金哥尔茨关于\(\infty\)的定义;来源于恩格斯关于无穷大量与无穷小的辩证关系(参见恩格斯《自然辩证法》2018年中文版P187页),春风晚霞也想问问你他妈的\(\infty=Sup\mathbb{N}\)来源何处?春风晚霞也想问问究竟是他妈的哪个王八蛋在反现行数学?!
回复 支持 反对

使用道具 举报

发表于 2025-11-5 15:22 | 显示全部楼层

定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-11-6 07:40 | 显示全部楼层
春霞见贴便滚见数学就反:孬种老痴丧心病狂

若数列\(\{n\}\)趋于\(v=\lim n\in\mathbb{N}\), 则据Weierstrass,
对\(\varepsilon=\frac{1}{2}\) 存在\({\small N}>v\) 使 \(n>\small N\)蕴涵 \(|n-v|< \varepsilon.\)
取\(n=2\small N\) 即得 \(1< 2{\small N}-v<|n-v|<\varepsilon=\frac{1}{2}\)
的矛盾!所以 \(\lim n\)在 Weierstrass 意义下不存在.
\(\{n\}\)发散. 更谈不上它(\(\lim n\))是自然数了.

从Weierstrass极限定义知滚驴的\(\lim n\in\mathbb{N}\)
泡汤.
滚驴白痴真身被验明, 孬贼船漏不打一处来.
回复 支持 反对

使用道具 举报

发表于 2025-11-6 11:29 | 显示全部楼层
elim 发表于 2025-11-6 07:40
春霞见贴便滚见数学就反:孬种老痴丧心病狂

若数列\(\{n\}\)趋于\(v=\lim n\in\mathbb{N}\), 则据Weie ...


        【定理】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-11-6 18:24 | 显示全部楼层
elim 发表于 2025-11-6 18:22
现行数学定理:\(\lim n\not\in\mathbb{N}\).
(反证法) 若 \(\lim n = m\in\mathbb{N}\), 取\(\varepsilon ...


命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-11-6 19:19 | 显示全部楼层
据Weierstrass 极限定义, \(\lim n\not\in\mathbb{N}\). 证明如下:
(反证法) 若 \(\lim n = m\in\mathbb{N}\),  取 \(\varepsilon=1,\) 对任意
\({\scriptsize N}> m\),  当 \(n\scriptsize >N\) 时 \(\small |n-m| > {\scriptsize N}-m\ge 1=\varepsilon.\)
故 \(\lim n\ne m.\quad\therefore\;\;\lim n\) 不等于任何自然数!!
用春霞自己的话, 瞎驴目测 \(\lim n\in\mathbb{N}\) 大錯特错.

【注记】本定理及其证明指出, 除非序扩充 \(\mathbb{N}\) 至
\(\mathbb{N}^*=\mathbb{N}\cup\{\infty\}\)(\(\infty=\sup\mathbb{N}\)),  进一步如实函以
\({\small\forall M\in\mathbb{N}\,\exists N\in\mathbb{N}\,\forall n>N\,(}a_n>\small M)\)为\(\lim a_n\small=\infty\)
的定义, \(\lim n\)在Weierstrass(狭义)极限定义下是
不存在的!滚驴对顽瞎目测的所有证明都预设了
\(\lim n\) 的存在, 因而都是不成立的, 反数学的
.

回复 支持 反对

使用道具 举报

发表于 2025-11-6 20:37 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-11-6 21:18 | 显示全部楼层
\(\lim (n\pm k)\) 不存在, \((\lim n)\pm k\) 是什么,
嗜吃狗屎的春驴
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-7 18:29 , Processed in 0.119152 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表