数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge^*\textbf{ 据}\text{Weierstrass}\textbf{定义,}\lim n\textbf{不存在}\)

[复制链接]
发表于 2025-11-7 06:25 | 显示全部楼层
elim 发表于 2025-11-6 21:18
\(\lim (n\pm k)\) 不存在, \((\lim n)\pm k\) 是什么,
嗜吃狗屎的春驴?


命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
回复 支持 反对

使用道具 举报

发表于 2025-11-10 05:37 | 显示全部楼层

elim又发宿帖称【在现行数学中, 数列(菲赫金哥尔兹称其为整序变量)\(\{a_n\}\)的定义域为\(\mathbb{N}_+=\{m∈N:m>0\}\)上的函数, 而\(\lim n=∞\)不在数列的定义域中,  因此,\(a_∞\)无定义。所以一般地\(\lim a_n=a_∞\)不成立.滚驴蠢可达的猿声啼不住, 现行数学的轻舟已过万重山】春风晚霞试问elim,为什么\(\displaystyle\lim_{n \to \infty} n=∞\)不在定义域中?①、是\(\displaystyle\lim_{n \to \infty} n\)\(≤0\)吗?你的依据是什么?你论证的“底层逻辑”又是什么?②、是\(\displaystyle\lim_{n \to \infty} n=∞\)不属于\(\mathbb{N}\)吗?你的依据是什么?你论证的“底层逻辑”又是计么?elim,你必须知晓\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)这只是你期待的结果,并非是经得起逻辑推敲的数学事实!所以,即使你每天把被批臭批烂的宿帖发上几百次,你都无法改变\(\displaystyle\lim_{n \to \infty} n\)\(\in\mathbb{N}\)这一事实!至于你罗列了一些说ω=\(\mathbb{N}\)的书,我百度搜索“有哪些数学家认为ω=N?”得到的回答是〖\(\color{red}{没有}\)数学家认为ω=N!(截图附后)〗一般地说elim的胡说八道是不可信的(谁信谁倒霉)!为了让数学人信奉你的观点,elim务必讲清楚\(\displaystyle\lim_{n \to \infty} n=\infty\)为什么不属于\(\mathbb{N}\)!否则你除了蒙骗你的信徒,你还能蒙骗谁呢?

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

发表于 2025-11-10 15:39 | 显示全部楼层

elim又发宿帖称【在现行数学中, 数列(菲赫金哥尔兹称其为整序变量)\(\{a_n\}\)的定义域为\(\mathbb{N}_+=\{m∈N:m>0\}\)上的函数, 而\(\lim n=∞\)不在数列的定义域中,  因此,\(a_∞\)无定义。所以一般地\(\lim a_n=a_∞\)不成立.滚驴蠢可达的猿声啼不住, 现行数学的轻舟已过万重山】春风晚霞试问elim,为什么\(\displaystyle\lim_{n \to \infty} n=∞\)不在定义域中?①、是\(\displaystyle\lim_{n \to \infty} n\)\(≤0\)吗?你的依据是什么?你论证的“底层逻辑”又是什么?②、是\(\displaystyle\lim_{n \to \infty} n=∞\)不属于\(\mathbb{N}\)吗?你的依据是什么?你论证的“底层逻辑”又是计么?elim,你必须知晓\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)这只是你期待的结果,并非是经得起逻辑推敲的数学事实!所以,即使你每天把被批臭批烂的宿帖发上几百次,你都无法改变\(\displaystyle\lim_{n \to \infty} n\)\(\in\mathbb{N}\)这一事实!至于你罗列了一些说ω=\(\mathbb{N}\)的书,我百度搜索“有哪些数学家认为ω=N?”得到的回答是〖\(\color{red}{没有}\)数学家认为ω=N!(截图附后)〗一般地说elim的胡说八道是不可信的(谁信谁倒霉)!为了让数学人信奉你的观点,elim务必讲清楚\(\displaystyle\lim_{n \to \infty} n=\infty\)为什么不属于\(\mathbb{N}\)!否则你除了蒙骗你的信徒,你还能蒙骗谁呢?
回复 支持 反对

使用道具 举报

发表于 2025-11-10 19:57 | 显示全部楼层

定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-11-10 19:59 | 显示全部楼层

定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-11-10 20:12 | 显示全部楼层
恭喜elim成功证明了自然数集是空集![/sizr]
回复 支持 反对

使用道具 举报

发表于 2025-11-10 20:20 | 显示全部楼层
恭喜elim成功证明了自然数集是空集!
回复 支持 反对

使用道具 举报

发表于 2025-11-10 20:22 | 显示全部楼层
恭喜elim成功证明了自然数集是空集!
回复 支持 反对

使用道具 举报

发表于 2025-11-10 20:23 | 显示全部楼层
恭喜elim成功证明了自然数集是空集!
回复 支持 反对

使用道具 举报

发表于 2025-11-10 20:23 | 显示全部楼层
恭喜elim成功证明了自然数集是空集!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-7 18:29 , Processed in 0.098127 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表