|
以下是表头的文字说明:
# Hardy-Littlewood data数据 needed用于 to estimate估计the number of occurrences发生的 of a prime gap
#
# g is the prime gap素数间隙
# k is the number of primes in a prime constelation (k-tuple) K生素数
# T(g,k) is the accumulated累计 value值 of prod产生 (q-w) [see Brent's paper for details]
# A(g,k) is the constant常数 associated关联的 to T(g,k); the followin下列的g pari-gp function函数 can be used to compute计算 it:
# A(g,k,T)= /* compute A(g,k) from T(g,k) */
# { local(x);
# x=2^(k-1)*T*HL[k];
# forprime(p=3,g/2,if(p<=k,x/=(1-1/p)^k;);if(p>k,x/=(1-k/p););x/=p;);
# return(x);
# };
# /*
# ** to compute the Hardy-Littlewood constants常数 HL[k] use the following code代码:
# ** read("cohen.gp"); /* get this file from the pari-gp web site! */
# ** HL=vector(50);
# ** for(k=2,50,HL[k]=prodeulerrat(p^(k-1)*(p-k)/(p-1)^k,k+1));
# */
#
# N(x;g) is the number of prime gaps of g up to x
# For example例如, for g=12 it can be estimated估算的;估计的 by:
# lv=vector(5);
# lx=log(x);
# lv[1]=real(-eint1(-lx)); /* the logarithmic integral */
# for(k=2,5,lv[k]=(lv[k-1]-x/lx^(k-1))/(k-1)); /* warning: LOSS OF PRECISION (use extra precision) */
# Napprox=A(12,2,6)*lv[2]-A(12,3,14)*lv[3]+A(12,4,10)*lv[4]-A(12,5,2)*lv[5];
# /* note the alternating sign; the constants A(12,k,T) should be pre-computed */
#
# Last updated on September 8, 2012
以上文字说明中有两段C程序代码,请白老师给以翻译和解释!
表格中共有4列数据,第1列g——素数间距;k——生数;T(g,k)——**的累计值;A(g,k)——常数。
N(x,g)中的x是指的哪个数字?
|
|