|

楼主 |
发表于 2021-5-25 11:58
|
显示全部楼层
连续素数之间的间隔:
介绍:
The computation of the first occurrence of prime gaps of a given (even) size between consecutive primes has some theoretical interest [1, problem A8], [2]. Let p_k be the k-th prime number, i.e., p_1=2, p_2=3, p_3=5, ..., and let g_k=p_(k+1)-p_k be the gap between the consecutive primes p_k and p_(k+1). Harald Cramér [3] conjectured, based on probabilistic ideas, that the large values of g_k grow like (log p_k)^2. Our empirical data does not allow us to discriminate between this growth rate and, for example, (log pi(p_k))^2, where pi(x) is the usual prime counting function (note that pi(p_k)=k). Furthermore, the bounds presented below suggest yet another growth rate, namely, that of the square of the so-called Lambert W function. These growth rates differ by very slowly growing factors (like log log p_k). Much more data is needed to verify empirically which one is closer to the true growth rate.
Let P(g) be the least prime such that P(g)+g is the smallest prime larger than P(g). The values of P(g) are bounded, for our empirical data, by the functions
计算连续素数之间第一次出现给定(偶数)大小的素数间隔,有一些理论上的意义[1,问题 a8] ,[2]。设 p _ k 为 k 次素数,即 p _ 1 = 2,p _ 2 = 3,p _ 3 = 5,... ,且 g _ k = p _ (k + 1)-p _ k 为连续素数 p _ (k + 1)之间的间隔。Harald cramér [3]根据概率论的观点推测,g _ k 的大值会像(log p _ k) ^ 2那样增长。我们的经验数据不允许我们区分这个增长率和,例如,(log pi (p_k)) ^ 2,其中 pi (x)是通常的素数计数函数(注意 pi (p_k) = k)。此外,下面列出的界限表明还有另一个增长率,即所谓的朗伯W函数平方增长率。这些生长速率的差异由非常缓慢的生长因素(如对数 loglogp_k)。需要更多的数据来验证哪一个更接近真实的增长率。让 p (g)是最小素数,使得 p (g) + g 是大于 p (g)的最小素数。对于我们的经验数据,p (g)的值是有界的
这应该与熊一兵先生研究的边界有关。 |
|