|

楼主 |
发表于 2021-5-25 12:23
|
显示全部楼层
References
[1] Richard K. Guy, Unsolved problems in number theory, third edition, Springer-Verlag, 2004.
[2] Hans Riesel, Prime numbers and computer methods for factorization, second edition, Birkhäuser, 1994.
[3] Harald Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arithmetica, vol. 2, pp. 23-46, 1936.
[4] Marek Wolf, First occurrence of a given gap between consecutive primes, preprint, April 1997.
[5] Tomás Oliveira e Silva, Siegfried Herzog, and Silvio Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4·10^18, Mathematics of Computation, vol. 83, no. 288, pp. 2033-2060, July 2014 (published electronically on November 18, 2013).
[6] Jeff Young and Aaron Potler, First occurrence prime gaps, Mathematics of Computation, vol. 52, no. 185, pp. 221-224, January 1989.
[7] Thomas R. Nicely, New maximal prime gaps and first occurrences, Mathematics of Computation, vol. 68, no. 227, pp. 1311-1315, July 1999.
[8] Thomas R. Nicely and Bertil Nyman, First occurrence of a prime gap of 1000 or greater (unpublished).
[9] Bertil Nyman and Thomas R. Nicely, New prime gaps between 10^15 and 5·10^16, Journal of Integer Sequences, vol. 6, no. 3, article 03.3.1, August 2003 (published electronically).
[10] Andrew Odlyzko, Michael Rubinstein, and Marek Wolf, Jumping champions, Experimental Mathematics, vol. 8, no. 2, pp. 107-118, 1999. (For a layman explanation of the results of this paper, see Ian Stewart, Jumping champions, Scientific American, vol. 283, no. 6, pp. 80-81, December 2000.)
[11] G. H. Hardy and J. E. Littlewood, Some problems of `partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, vol. 44, pp. 1-70, 1922.
[12] Richard P. Brent, The distribution of small gaps between sucessive primes, Mathematics of Computation, vol. 28, no. 125, pp. 315-324, January 1974.
参考文献[1]理查德・盖伊,《数论中未解决的问题》 ,第三版,斯普林格出版社,2004年。[2]汉斯 · 莱塞尔,《质数与计算机因子分解方法》 ,第二版,伯克豪泽,1994年。[3] harald cramér,关于连续素数之差的数量级,acta arithmetica,vol。2,pp. 23-46,1936.[4]马雷克 · 沃尔夫,第一次出现在连续的素数之间,预印本,1997年4月。[5] tomás oliveira e silva,siegfried herzog,和 silvio pardi,偶数哥德巴赫猜想的经验验证和4.10 ^ 18的质数间隔的计算,计算数学,vol。83,no. 288,pp. 2033-2060,2014年7月(2013年11月18日以电子方式发布)。[6]杰夫 · 杨和亚伦 · 波特勒,第一次出现质数缺口,计算数学,第卷。52,no. 185,pp. 221-224,january 1989.[7]托马斯 r 很好,新的最大素数间隔和首次出现,计算数学,卷。68,no. 227,pp. 1311-1315,july 1999.[8]托马斯 r. nicely 和伯蒂尔. 尼曼,第一次出现1000或更大的质数缺口(未发表)。[9] bertil nyman 和 thomas r nicely,10 ^ 15和5.10 ^ 16之间的新素数间隔,整数序列杂志,第卷。6,no. 3,article 03.3.1,2003年8月(以电子方式发布)。[10] andrew odlyzko,michael rubinstein,and marek wolf,jumping champions,experimental mathematics vol.8,no. 2,pp. 107-118,1999.(对于这篇论文的结果,外行人解释,请参见伊恩 · 斯图尔特,跳跃冠军,科学美国人,第一卷。283,no. 6,pp. 80-81,december 2000.)[11] g.h. 哈代和 j. e. 利特伍德,关于数的部分数的一些问题; iii: 关于数作为素数和的表达式,数学学报,第卷。44,pp. 1-70,1922.[12] richard p. brent,计算数学,第卷。28,no. 125,pp. 315-324,january 1974. |
|