|

楼主 |
发表于 2011-4-26 20:28
|
显示全部楼层
一个属于中国人的新数种“无穷小数”诞生了
既然知道皮亚诺公理,怎么又把皮亚诺公理用到了实数上了呢?
**********************
皮亚诺在《算术原理方法》一书中,使用了一系列符号,如用∈,NO和a+分别表示属于、包含、自然数类和a的下一个自然数等;给出了四个不加定义的原始概念:集合,自然数,后继数和属于;还提出了自然数的五个公理:
1)1是自然数;
2)1不是任何自然数的后继数;
3)每个自然数a都不一个后继数a+;
4)如果a+=b+,则a=b;
5)如果s是一个含有1的自然数集合,且当s含有a时,也含有a+,则s含有全部自然数。这个公理是数学归纳法的逻辑基础。
接着,皮亚诺根据自然数定义整数:设a,b为自然数。则数对(a,)即"a-b"定义整数。当a>b,a/span>
有了整数概念,再通过有序对定义有理数:若n,m为整数,则有序对(n,m)(m<>0)即n/m定义一个有理数。
这样,皮亚诺应用数学符号和公理方法,在自然数公理的基础上,简明扼要地建立起自然数系、整数系和有理数系。当然用公理的、逻辑的方法构造出来的数系,使一数学家感到很不自然。他们认为这是将本一清楚的概念"做了不可理解的推广,然而,实数理论的建立,谱写了19世纪数学史上辉煌的一章。
我是一个老头,外行,请多指教 |
|