|

楼主 |
发表于 2020-8-9 08:57
|
显示全部楼层
定理2 单调有界序列必收敛.
证:不妨设\(\{a_n\}\)单调升. 令\(\,E=\{a_n\mid n\in\mathbb{N}^+\},\;A=\sup E.\)
\(\qquad\)任给\(\,\varepsilon>0,\;\,A-\varepsilon/2\,\)不是\(\,E\,\)的上界,存在某\(\,N\in\mathbb{N}\,\)使
\(\qquad A-\varepsilon < a_N\le a_n\le A\small\;(n>N).\,\)即\(\,|a_n-A|< \varepsilon\;\small(n> N)\).
例4 设\((a_1,b_1)=(3,2),\,(a_{n+1},b_{n+1})=(a_n+2b_n,a_n+b_n)\)
\(\qquad\)试证\(\,\{\frac{a_n}{b_n}\}\)收敛, 并计算\(\,\displaystyle\lim_{n\to\infty}{\small\frac{a_n}{b_n}}\).
解:从递归关系得\(\,a_{n+1}=b_{n+1}+b_n=b_{n+2}-b_{n+1}.\,\)于是
\(\quad\)\(b_{n+2}-2b_{n+1}-b_n=0,\;\; b_n=\frac{1}{2\sqrt{2}}\big({\small(1+\sqrt{2})^{n+1}-(1-\sqrt{2})^{n+1}}\big)\)
\(\quad\)进而得\(\,a_n=\frac{1}{2}\big({\small(1+\sqrt{2})^{n+1}+(1-\sqrt{2})^{n+1}}\big)\)
\(\quad\)注意\(\,\small(1+\sqrt{2})^n\,(\color{blue}{(1-\sqrt{2})^n}))\to\infty\,(\color{blue}{0})\;{\small(n\to\infty),}\;\,\displaystyle\lim_{n\to\infty}{\small\frac{a_n}{b_n}}=\sqrt{2}.\) |
|