|

楼主 |
发表于 2020-12-31 19:56
|
显示全部楼层
十三、 结束语
这篇文章对概率论与统计学一些最基本的概念、思想、方法与工具所包含的经济含义,以及它们在经济学的一些重要应用,做了详细的阐述。本文的一个主要目的是想说明,在经济学研究越来越多使用定量方法的时候,需要注意定量方法的可解释性特别是其经济可解释性,同时理解定量分析方法如何应用于经济分析之中。
本文所讨论的例子没有也不可能覆盖所有概率论与统计学可以应用的范围。我们希望本文能够通过抛砖引玉,让大家多关注概率论与统计学在经济学应用的实例,更加丰富这些实例。通过这种方式,使经济管理类的学生认识到学习经济数学特别是概率论与统计学的重要性,同时更深刻理解概率论与统计学的经济含义及其在经济学的应用。
另一方面,本文只是讨论概率论与统计学中一些基本的概念、思想、方法与工具在经济学的应用。还有很多比较高深的概率论与统计学方法与工具,本文没有讨论到,但是它们在经济学中也有重要的应用。例如,在时间序列分析中,任何平稳时间序列可以被分解为互相正交的不同频率的周期函数之和,每个频率的权重大小可由谱密度函数(spectral density function)来刻画(参见Hong, 2020)。因此,如果谱函数在某个频率出现一个峰值,那就意味着该频率的随机权重最大,因而主导着平稳时间序列的周期性动态变化。若应用于宏观经济时间序列数据,谱密度函数可以分析和刻画经济波动与经济周期(如Hamilton, 1994, Chapter 6)。另一个例子,常见的概率论与统计学主要关注随机变量或随机向量的概率法则,没有涵盖随机集(random sets)的概率法则。所谓随机集,是指取值为一个集合的随机变量。最简单的随机集例子是一维随机集,即区间随机变量(interval-valued random variable),其取值不是一个点,而是一个区间。常见例子包括每天的最低温和最高温、每个交易日的最低股价和最高股价、每天的低血压和高血压、每笔交易的买卖价格(bid-ask prices)等分别组成的区间数据。与点数据相比,区间数据包含更多信息,但是区间数据长期没有得到有效利用。区间数据建模具有很大的挑战性,需要用到随机集概率论(参见Li, Ogura & Kreinovich, 2002),甚至需要定义区间运算法则与两个区间随机变量的协方差,需要建立区间随机变量的大数定律和中心极限定理等。Han, Hong & Wang(2018),Han et al.(2016)和Sun et al.(2018)率先提出了时间序列自回归区间模型,在一个统一的分析框架中建立了模型、估计、检验的统计理论与方法。区间数据建模在经济学有很广泛的应用空间,包括宏观经济区间管理(参见孙玉莹、洪永淼和汪寿阳,2020)。这些以及其他比较高深的概率论与统计学在经济学的应用,将在后续研究中给予阐明。
参考文献:
Adrian, T., & Brunnermeier, M. K. (2011). CoVaR. American Economic Review, 106(7), 1705-1741.
Angrist, J., Azoulay, P., Ellison, G., Hill, R., & Lu, S. F. (2017). Economic Research Evolves: Fields and Styles. American Economic Review, 107(5), 293-297.
Bachelier, L. (2011). Louis Bachelier's Theory of Speculation: The Origins of Modern Finance. Princeton: Princeton University Press.
Biau, G., Devroye, L., & Lugosi, G. (2008). Consistency of Random Forests and Other Averaging Classifiers. Journal of Machine Learning Research, 9, 2015-2033.
Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities, Journal of Political Economy, 81 (3), 637-654.
Breeden, D. T., & Litzenberger, R. H. (1978). Prices of State-Contingent Claims Implicit in Option Prices. Journal of Business, 51(4), 621-651.
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society, Series B, 34 (2): 187–220.
Diebold, F. X., Tay, A. S., & Wallis, K. F. (1999). Evaluating Density Forecasts of Inflation: The Survey of Professional Forecasters. In R.F. Engle and H. White (eds.) Cointegration, Causality and Forecasting: Festschrift in Honour of Clive W. Granger. New York: Oxford University Press, 76-90.
Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, 987-1007.
Fama, E. F. (1965). The Behavior of Stock-Market Prices. Journal of Business, 38(1), 34-105.
Gisiger, N. Risk-Neutral Probabilities Explained (October 2010). Available at SSRN: https://ssrn.com/abstract=1395390.
Granger, C. W. J., & Newbold, P. (1974). Spurious Regressions in Econometrics. Journal of Econometrics, 2(2), 111-120.
Hadar, J., & Russell, W. R. (1969). Rules for Ordering Uncertain Prospects. American Economic Review, 59(1), 25–34.
Hamilton, J. (1994). Time Series Analysis. Princeton: Princeton University Press.
Han, A., Hong, Y., Wang, S., & Yun, X. (2016). A Vector Autoregressive Moving Average Model for Interval-Valued Time Series Data. Essays in Honor of Aman Ullah, Advances in Econometrics, 36, 417-460.
Han, A., Hong, Y., & Wang, S. (2018). Autoregressive Conditional Interval Models for Time Series Data. Working Paper, Department of Economics and Department of Statistics and Data Science, Cornell University.
Hanoch, G., & Levy, H. (1969). The Efficiency Analysis of Choices Involving Risk. Review of Economic Studies, 36(3), 335–346.
Hong, Y., Liu, Y., & Wang, S. (2009). Granger Causality in Risk and Detection of Extreme Risk Spillover between Financial Markets. Journal of Econometrics, 150(2), 271–287.
Hong, Y. (2020). Modern Time Series Analysis: Theory and Applications, Manuscript, Department of Economics and Department of Statistics and Data Science, Cornell University.
Hull, J. C. (2017). Options Futures and Other Derivatives (10th ed.). London: Pearson.
Jorion, P. (2000). Value at Risk (3rd ed.). New York: McGraw-Hill.
Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47, 263-291.
Krugman, P. (1991). Geography and Trade. Cambridge, MA: MIT Press.
Li, S., Ogura, Y., & Kreinovich, V. (2002). Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables. Dordrecht: Kluwer Academic Publishers.
Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. Review of Economics and Statistics, 47(1), 13-37.
Malkiel, B. G. (1973). A Random Walk down Wall Street. New York: W. W. Norton & Company.
Markowitz, H. M. (1952). Portfolio Selection. Journal of Finance, 7(1), 77-91.
Markowitz, H. M. (1991). Foundations of Portfolio Theory. Journal of Finance, 46(2), 469-477.
Morgan, J. P. (1996). RiskMetrics – Technical Document (4th ed.). New York: Morgan Guaranty Trust Company.
Morini, M. (2011). Understanding and Managing Model Risk: A Practical Guide for Quants, Traders and Validators. Hoboken: John Wiley & Sons.
Mossin, J. (1966). Equilibrium in a Capital Asset Market. Econometrica, 34(4), 768-783.
Muth, J. F. (1961). Rational Expectations and the Theory of Price Movements. Econometrica, 29(3), 315-335.
Pearl, J. (2009). Causality: Models, Reasoning, and Inference (2nd ed.). New York: Cambridge University Press.
Rothschild, M., & Stiglitz, J. E. (1970). Increasing Risk I: A Definition. Journal of Economic Theory, 2(3), 225–43.
Scornet, E., Biau, G., & Vert, J. P. (2015). Consistency of Random Forests. Annals of Statistics, 43(4), 1716-1741.
Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. Journal of Finance, 19(3), 425-442.
Shobha, G., & Rangaswamy, S. (2018). Machine Learning. In V. N. Gudivada & C. R. Rao (eds.) Handbook of Statistics, 38, 197-228.
Sun, Y., Han, A., Hong, Y., & Wang, S. (2018). Threshold Autoregressive Models for Interval-Valued Time Series Data. Journal of Econometrics, 206(2), 414-446.
Varian, H. R. (2016). Causal Inference in Economics and Marketing. Proceedings of National Academy of Sciences, 113(27), 7310-7315.
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-Values: Context, Process, and Purpose. American Statistician, 70(2), 129-133.
Whang, Y. J. (2019). Econometric Analysis of Stochastic Dominance: Concepts, Methods, Tools, and Applications. Cambridge: Cambridge University Press.
White, H. (1992). Artificial Neural Networks: Approximation and Learning Theory. Hoboken: Blackwell Publishers, Inc.
洪永淼. (2017). 概率论与统计学. 北京: 中国统计出版社.
孙玉莹, 洪永淼, 汪寿阳. (2020). 区间计量经济学的若干新近发展及展望, 工作论文.
托马斯·皮凯蒂. (2014). 21世纪资本论. 巴曙松译, 北京: 中信出版社. |
|