数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: kids20082008

给出正整数列 a1,a2,…,a18=2020 使得对 3≤k≤18 均有 1≤i<j<k 使得 ak=ai+aj

[复制链接]
发表于 2021-1-17 09:59 | 显示全部楼层
本帖最后由 uk702 于 2021-1-17 10:24 编辑
王守恩 发表于 2021-1-17 09:26
uk702!8楼我不会用。这串数会长得不快吧?
记 F(n)=1, 2, 3, 5, 8, 13, 21, 34, 55, ......   
记 S ...


没看懂。你说的“项数”是什么意思呢?指的是所有不同 an 的个数吗?比如说,n=5, an=3,4,5,6,7,8 这6个“项”吗?或者说由于 n=5 时,an 的最大值为 8(也就是 F(5) 的意思),而 F(4)=5,故满足 F(4)<an≤F(5),也说是 an= 6,7,8 这3个项(这3项共6个解)?

你说的“最大解集的数量”应该跟我说的也不是同一个意思。

比如说  n=5, 以下是它的所有解:
n = 5, [1, 2, 3, 3, 3]
n = 5, [1, 2, 3, 3, 4]
n = 5, [1, 2, 3, 3, 5]
n = 5, [1, 2, 3, 3, 6]
n = 5, [1, 2, 3, 4, 3]
n = 5, [1, 2, 3, 4, 4]
n = 5, [1, 2, 3, 4, 5]
n = 5, [1, 2, 3, 4, 6]
n = 5, [1, 2, 3, 4, 7]
n = 5, [1, 2, 3, 5, 3]
n = 5, [1, 2, 3, 5, 4]
n = 5, [1, 2, 3, 5, 6]
n = 5, [1, 2, 3, 5, 5]
n = 5, [1, 2, 3, 5, 7]
n = 5, [1, 2, 3, 5, 8]

我说的“最大解集的数量”是指这 15 个解,让 an 取前 n-1个中两两相加的值,故 S(n)(计入重复)满足  S(n+1)=S(n)*(n-1)(n-2)/2 ,但这种算法存在不少的重复.,因此肯定是偏大的

而严格递增解是:
n = 5, [1, 2, 3, 4, 5]
n = 5, [1, 2, 3, 4, 6]
n = 5, [1, 2, 3, 4, 7]
n = 5, [1, 2, 3, 5, 6]
n = 5, [1, 2, 3, 5, 7]
n = 5, [1, 2, 3, 5, 8]
计 6 个。
回复 支持 反对

使用道具 举报

发表于 2021-1-17 12:01 | 显示全部楼层
本帖最后由 王守恩 于 2021-1-17 15:31 编辑
uk702 发表于 2021-1-17 09:59
没看懂。你说的“项数”是什么意思呢?指的是所有不同 an 的个数吗?比如说,n=5, an=3,4,5,6,7,8 这6 ...


01=1
02=1, 2
03=1, 2, 3
04=1, 2, 3, 4
05=1, 2, 3, 5
06=1, 2, 3, 4, 6
06=1, 2, 3, 5, 6
07=1, 2, 3, 4, 7
07=1, 2, 3, 5, 7
08=1, 2, 3, 5, 8
09=1, 2, 3, 4, 5, 9
09=1, 2, 3, 4, 6, 9
09=1, 2, 3, 4, 7, 9
09=1, 2, 3, 5, 6, 9
09=1, 2, 3, 5, 7, 9
09=1, 2, 3, 5, 8, 9
10=1, 2, 3, 4, 6, 10
10=1, 2, 3, 4, 7, 10
10=1, 2, 3, 5, 7, 10
10=1, 2, 3, 5, 8, 10
11=1, 2, 3, 4, 7, 11
11=1, 2, 3, 5, 6, 11
11=1, 2, 3, 5, 8, 11
12=1, 2, 3, 5, 7, 12
13=1, 2, 3, 5, 8, 13
14=1, 2, 3, 4, 5, 09, 14
14=1, 2, 3, 4, 6, 08, 14
14=1, 2, 3, 4, 6, 10, 14
14=1, 2, 3, 4, 7, 10, 14
14=1, 2, 3, 4, 7, 11, 14
14=1, 2, 3, 5, 6, 08, 14
14=1, 2, 3, 5, 6, 09, 14
14=1, 2, 3, 5, 6, 11, 14
14=1, 2, 3, 5, 7, 09, 14
14=1, 2, 3, 5, 7, 12, 14
14=1, 2, 3, 5, 8, 09, 14
14=1, 2, 3, 5, 8, 11, 14
14=1, 2, 3, 5, 8, 13, 14

您是对的,错误已改。
对!!!我就是这个意思。

点评

按你这个要求,只能求 a17=2018 有多少个解了。  发表于 2021-1-17 15:24
这相当于:1)只考虑严格递增解;2)对于指定的 n,只关心 F(n-1) < an ≤ F(n) 的情况。比如说 n=5,只考虑 5 < an ≤ 8 的解。如果是这样,05=1, 2, 3, 5 才对,而不是 05=1, 2, 3, 4, 5  发表于 2021-1-17 14:00
回复 支持 反对

使用道具 举报

发表于 2021-1-17 17:42 | 显示全部楼层
按这个要求,写了 julia 程序进行计算,算到 k=12 之后就算不下去了,前 233 项的结果如下(注意数字并不连续,中间有些 n  无解,a17=2018 似乎就是无解),反正我是找不出规律来:
n = 4, k = 4, sols = 1
n = 5, k = 4, sols = 1
n = 6, k = 5, sols = 2
n = 7, k = 5, sols = 2
n = 8, k = 5, sols = 1
n = 9, k = 6, sols = 6
n = 10, k = 6, sols = 4
n = 11, k = 6, sols = 3
n = 12, k = 6, sols = 1
n = 13, k = 6, sols = 1
n = 14, k = 7, sols = 13
n = 15, k = 7, sols = 9
n = 16, k = 7, sols = 6
n = 17, k = 7, sols = 5
n = 18, k = 7, sols = 3
n = 19, k = 7, sols = 2
n = 21, k = 7, sols = 1
n = 22, k = 8, sols = 28
n = 23, k = 8, sols = 21
n = 24, k = 8, sols = 15
n = 25, k = 8, sols = 10
n = 26, k = 8, sols = 8
n = 27, k = 8, sols = 7
n = 28, k = 8, sols = 3
n = 29, k = 8, sols = 4
n = 30, k = 8, sols = 1
n = 31, k = 8, sols = 2
n = 34, k = 8, sols = 1
n = 35, k = 9, sols = 44
n = 36, k = 9, sols = 37
n = 37, k = 9, sols = 33
n = 38, k = 9, sols = 21
n = 39, k = 9, sols = 22
n = 40, k = 9, sols = 11
n = 41, k = 9, sols = 14
n = 42, k = 9, sols = 6
n = 43, k = 9, sols = 9
n = 44, k = 9, sols = 6
n = 45, k = 9, sols = 4
n = 46, k = 9, sols = 3
n = 47, k = 9, sols = 3
n = 49, k = 9, sols = 2
n = 50, k = 9, sols = 2
n = 55, k = 9, sols = 1
n = 56, k = 10, sols = 59
n = 57, k = 10, sols = 67
n = 58, k = 10, sols = 48
n = 59, k = 10, sols = 46
n = 60, k = 10, sols = 32
n = 61, k = 10, sols = 35
n = 62, k = 10, sols = 23
n = 63, k = 10, sols = 18
n = 64, k = 10, sols = 18
n = 65, k = 10, sols = 19
n = 66, k = 10, sols = 8
n = 67, k = 10, sols = 10
n = 68, k = 10, sols = 8
n = 69, k = 10, sols = 8
n = 70, k = 10, sols = 7
n = 71, k = 10, sols = 9
n = 73, k = 10, sols = 4
n = 74, k = 10, sols = 3
n = 75, k = 10, sols = 2
n = 76, k = 10, sols = 3
n = 79, k = 10, sols = 2
n = 80, k = 10, sols = 1
n = 81, k = 10, sols = 2
n = 89, k = 10, sols = 1
n = 90, k = 11, sols = 81
n = 91, k = 11, sols = 89
n = 92, k = 11, sols = 69
n = 93, k = 11, sols = 57
n = 94, k = 11, sols = 61
n = 95, k = 11, sols = 57
n = 96, k = 11, sols = 35
n = 97, k = 11, sols = 45
n = 98, k = 11, sols = 33
n = 99, k = 11, sols = 29
n = 100, k = 11, sols = 26
n = 101, k = 11, sols = 26
n = 102, k = 11, sols = 18
n = 103, k = 11, sols = 21
n = 104, k = 11, sols = 12
n = 105, k = 11, sols = 18
n = 106, k = 11, sols = 14
n = 107, k = 11, sols = 10
n = 108, k = 11, sols = 5
n = 109, k = 11, sols = 9
n = 110, k = 11, sols = 8
n = 111, k = 11, sols = 9
n = 112, k = 11, sols = 7
n = 113, k = 11, sols = 6
n = 114, k = 11, sols = 4
n = 115, k = 11, sols = 6
n = 116, k = 11, sols = 2
n = 117, k = 11, sols = 2
n = 118, k = 11, sols = 3
n = 119, k = 11, sols = 4
n = 120, k = 11, sols = 2
n = 121, k = 11, sols = 2
n = 123, k = 11, sols = 3
n = 128, k = 11, sols = 2
n = 129, k = 11, sols = 2
n = 131, k = 11, sols = 2
n = 144, k = 11, sols = 1
n = 145, k = 12, sols = 124
n = 146, k = 12, sols = 91
n = 147, k = 12, sols = 92
n = 148, k = 12, sols = 66
n = 149, k = 12, sols = 76
n = 150, k = 12, sols = 72
n = 151, k = 12, sols = 68
n = 152, k = 12, sols = 58
n = 153, k = 12, sols = 56
n = 154, k = 12, sols = 45
n = 155, k = 12, sols = 55
n = 156, k = 12, sols = 29
n = 157, k = 12, sols = 46
n = 158, k = 12, sols = 34
n = 159, k = 12, sols = 38
n = 160, k = 12, sols = 28
n = 161, k = 12, sols = 28
n = 162, k = 12, sols = 18
n = 163, k = 12, sols = 22
n = 164, k = 12, sols = 12
n = 165, k = 12, sols = 22
n = 166, k = 12, sols = 19
n = 167, k = 12, sols = 24
n = 168, k = 12, sols = 14
n = 169, k = 12, sols = 17
n = 170, k = 12, sols = 12
n = 171, k = 12, sols = 12
n = 172, k = 12, sols = 5
n = 173, k = 12, sols = 12
n = 174, k = 12, sols = 8
n = 175, k = 12, sols = 4
n = 176, k = 12, sols = 7
n = 177, k = 12, sols = 8
n = 178, k = 12, sols = 8
n = 179, k = 12, sols = 9
n = 180, k = 12, sols = 3
n = 181, k = 12, sols = 8
n = 183, k = 12, sols = 9
n = 184, k = 12, sols = 4
n = 185, k = 12, sols = 3
n = 186, k = 12, sols = 6
n = 187, k = 12, sols = 2
n = 188, k = 12, sols = 2
n = 191, k = 12, sols = 5
n = 192, k = 12, sols = 2
n = 193, k = 12, sols = 3
n = 194, k = 12, sols = 3
n = 196, k = 12, sols = 2
n = 199, k = 12, sols = 3
n = 207, k = 12, sols = 2
n = 208, k = 12, sols = 1
n = 209, k = 12, sols = 2
n = 212, k = 12, sols = 2
n = 233, k = 12, sols = 1


参考代码:
  1. #http://www.mathchina.com/bbs/forum.php?mod=viewthread&tid=2044556&amp;page=1&;extra=#pid2395817
  2. a=[[1], [[1,2]], [[1,2,3]]]

  3. # 求各 ai 严格递增的解
  4. if true
  5.         b = [[1,2,3]]
  6.         fa = 3; fb = 5;
  7.         for k=4:18
  8.                         global b, fa, fb
  9.                         result = []; t = 0;
  10.                         for u=1:length(b)
  11.                                         for i=1:length(b[u])-1
  12.                                                         t1 = b[u][i]
  13.                                                         for j=i+1:length(b[u])
  14.                                                                         t2 = b[u][j]
  15.                                                                         s = t1 + t2
  16.                                                                         if s > b[u][end]
  17.                                                                                         tp = copy(b[u]); tp = append!(tp, s)
  18.                                                                                         append!(result, [tp])
  19.                                                                         end   
  20.                                                         end
  21.                                         end
  22.                         end
  23.                         b=unique(result)
  24.                         sort!(b, lt=(x, y)->isless(x[end], y[end]))
  25.                         for j=1:length(b)
  26.                                         if b[j][end] <= fa
  27.                                                 continue
  28.                                         end
  29.                                        
  30.                                         t += 1
  31.                                         if j == length(b) || b[j][end] < b[j+1][end]
  32.                                                         #println("k = $k, $(b[j])")
  33.                                                         println("n = $(b[j][end]), k = $k, sols = $t")
  34.                                                         t = 0
  35.                                         else
  36.                                                         #println("k = $k, $(b[j])")
  37.                                         end   
  38.                         end
  39.                         fb, fa = fb + fa, fb
  40.         end
  41. end

复制代码

评分

参与人数 1威望 +15 收起 理由
王守恩 + 15 谢谢!弥足珍贵!谢谢!!

查看全部评分

回复 支持 反对

使用道具 举报

发表于 2021-1-18 08:05 | 显示全部楼层
uk702 发表于 2021-1-17 17:42
按这个要求,写了 julia 程序进行计算,算到 k=12 之后就算不下去了,前 233 项的结果如下(注意数字并不连 ...

a17=2018 似乎就是无解,a18=2018 共有 2612 个严格递增的解
冰火两重天!这题目还真是有点意思了。
回复 支持 反对

使用道具 举报

发表于 2021-1-18 08:51 | 显示全部楼层
uk702 发表于 2021-1-17 17:42
按这个要求,写了 julia 程序进行计算,算到 k=12 之后就算不下去了,前 233 项的结果如下(注意数字并不连 ...

uk702!我们先往前走?

正整数数列: a1, a2,…, an
其中 a1=1, a2=2, ak=ai+aj
在这里: 3≤k≤n, 1≤i<j<k
试证:当 6<n 时,an=Fn-1 无解。
Fn(兔子数列)=1, 2, 3, 5, 8, 13, 21, 34,....
回复 支持 反对

使用道具 举报

发表于 2021-1-18 11:00 | 显示全部楼层
既然兄弟热情依旧,我创建了 https:\/\/gitee.com/uk702/mathchina2044556 的 git 仓,以保存相关的代码和结果(这里只能贴<250k 的文件)。

为了方便讨论,我建议作如下的约定:

#### 约定
##### (普通)解
对于给定的 k,满足题目要求的任何一个数列。 \
如 k=3时,只有 [1,2,3] 这一个解,k=4时,有 [1,2,3,3],[1,2,3,4],[1,2,3,5] 共 3 个(普通)解。 \
\
同时,若对于指定的 n, 有满足条件的数列存在,则称这个数列是 n 的一个(普通)解,如 n=5 时,数列 [1,2,3,5] 是它的一个解,这时 k=4。

##### 严格递增解
满足 a1 < a2 < a3 < ... < ak 的解,也就是 ai 严格递增的解 \
如 k=4 时,严格递增解有 [1,2,3,4],[1,2,3,5] 共 2 个解。 \

##### 兔子解
以 F(n) 表示兔子数列 1,2,3,5,8,13,... \
若某个严格递增解同时满足 F(k-1) < ak <= F(k),则称这个解是兔子解。 \
如 k=4 时,由于F(4)=5,F(3)=3,故 [1,2,3,4],[1,2,3,5] 这两个解都是兔子解。 \
而 k=5 时,由于F(5)=8,F(4)=5,故共有 [1,2,3,4,6],[1,2,3,5,6],[1,2,3,4,7],[1,2,3,5,7],[1,2,3,5,8] 这 5 个兔子解。

##### 增强兔子解
增强兔子解除了 ak 要满足 F(k-1) < ak ≤ F(k) 外,还要求对每个 i ≤ k,都满足  F(i-1) < ai ≤ F(i) \
比如说 n=9, k=6,严格递增解(也是兔子解)共有 6 个,为如下所示:\
k = 6, [1, 2, 3, 4, 5, 9] \
k = 6, [1, 2, 3, 4, 6, 9] \
k = 6, [1, 2, 3, 5, 6, 9] \
k = 6, [1, 2, 3, 4, 7, 9] \
k = 6, [1, 2, 3, 5, 7, 9] \
k = 6, [1, 2, 3, 5, 8, 9] \
\
但增强兔子解只有 5 个解,这是因为 [1, 2, 3, 4, 5, 9] 中的 5,不满足 F(4) = 5 < ai  ≤ F(5) = 8,所以它是一个兔子解,但不是增强兔子解。

### 文件
文件【严格递增解/allailefi.txt】保存了 k<35 (k=35 没有算完)所有增强兔子解。
回复 支持 反对

使用道具 举报

发表于 2021-1-18 11:53 | 显示全部楼层
本帖最后由 王守恩 于 2021-1-18 11:56 编辑
uk702 发表于 2021-1-18 11:00
既然兄弟热情依旧,我创建了 https:\/\/gitee.com/uk702/mathchina2044556 的 git 仓,以保存相关的代码和 ...


从宝贵的13楼,我们可以知道:
an(最后1项)=20(共7项), 33(共8项), 54(共9项), 88(共10项), 143(共11项), 232(共12项)是无解的。
我就是想再看看(15楼的意思) :
376(共13项), 609(共14项), 986(共15项), 1596(共16项), 2583(共17项),...还是无解的吗?
我们先往前走一走,回头再来想为什么,会轻松些。
回复 支持 反对

使用道具 举报

发表于 2021-1-18 15:34 | 显示全部楼层
uk702 发表于 2021-1-17 17:42
按这个要求,写了 julia 程序进行计算,算到 k=12 之后就算不下去了,前 233 项的结果如下(注意数字并不连 ...

n = 4, k = 4, sols = 1
uk702 发表于 2021-1-17 17:42
按这个要求,写了 julia 程序进行计算,算到 k=12 之后就算不下去了,前 233 项的结果如下(注意数字并不连 ...
谢谢uk702!!!
从宝贵的13楼,我们可以知道,至少有:
n = 32—33, k = 8,连续2项无解
n = 51—54, k = 9,连续4项无解
n = 82—88, k = 10,连续7项无解
n = 132—143, k = 11,连续12项无解
n = 213—232, k = 12,连续20项无解
n = 344—376, k = 13,连续33项无解
n = 556—609, k = 14,连续54项无解
n = 899—986, k = 15,连续88项无解

点评

可能是多个连续子兔子长度的无解。比如说 k=15 时,除了有连续88项的无解外,还可能包含连续如 33 项、20项的无解。当 k 充分大时,ak 往往是某个兔子数,因此,两个兔子数之间的数就成了缺失项。  发表于 2021-1-18 15:58
好!重大成果发现!  发表于 2021-1-18 15:49
回复 支持 反对

使用道具 举报

发表于 2021-1-18 16:18 | 显示全部楼层
将兔子解扩展到 k≤18,由此推知 a17=2018 无解。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

发表于 2021-1-18 20:28 | 显示全部楼层
kids20082008!题目挺绕人的,能提供些什么吗?谢谢!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-18 20:59 , Processed in 0.110473 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表