|
本帖最后由 王守恩 于 2021-2-7 12:58 编辑
elim 发表于 2021-2-7 09:49
王守恩能不能用Mathematica求
\(a_1=1,\,a_{n+1}=\ln(1+a_n),\;\displaystyle\lim_{n\to\infty}\frac{n(na ...
这软件我也不会,是跟着陆老师,天山草,uk702,Nicolas2050,数学研发的大侠们学了一点点点。
1,a[1] = 1; a[n_] := Log[a[n - 1] + 1]
Table[a[n], {n, 1, 7}]
{1, Log[2], Log[1 + Log[2]], Log[1 + Log[1 + Log[2]]], Log[1 + Log[1 + Log[1 + Log[2]]]],
Log[1 + Log[1 + Log[1 + Log[1+Log[2]]]]], Log[1+Log[1+Log[1+Log[1+Log[1+Log[2]]]]]]}
2,a[1] = 1; a[n_] := Log[a[n - 1] + 1]
N[Table[a[n], {n, 1, 20}], 5]
{1.0000, 0.69315, 0.52659, 0.42304, 0.35279, 0.30217, 0.26403, 0.23431, 0.21051, 0.19104,
0.17483, 0.16112, 0.14939, 0.13923,0.13035, 0.12253, 0.11558, 0.10938, 0.10380, 0.098758}
3,a[1] = 1; a[n_] := Log[a[n - 1] + 1]
Table[(n (-2 + n a[n]))/Log[n], {n, 2, 6}]
{(2 (-2 + 2 Log[2]))/Log[2], (3 (-2 + 3 Log[1 + Log[2]]))/Log[3],
(4 (-2 + 4 Log[1 + Log[1 + Log[2]]]))/Log[4],(5(-2+5Log[1+Log[1+Log[1+Log[2]]]]))/Log[5],
(6 (-2 + 6 Log[1 + Log[1 + Log[1 + Log[1 + Log[2]]]]]))/Log[6]}
4,a[1] = 1; a[n_] := Log[a[n - 1] + 1]
N[Table[(n (-2 + n a[n]))/Log[n], {n, 2, 19}], 5]
{-1.7708, -1.1475, -0.88829, -0.73329, -0.62611, -0.54596, -0.48298, -0.43177, -0.38905,
-0.35272, -0.32131, -0.29382, -0.26949, -0.24776, -0.22820, -0.21047, -0.19430, -0.17947}
5,a[1] = 1; a[n_] := Log[a[n - 1] + 1]
N[Table[(n (-2 + n a[n]))/Log[n], {n, 37, 51}], 5]
{-0.028411, -0.023398, -0.018580, -0.013945, -0.0094804, -0.0051765, -0.0010235,
0.0029873, 0.0068641, 0.010614, 0.014245, 0.017762, 0.021172, 0.024480, 0.027691}
6,a[1] = 1; a[n_] := Log[a[n - 1] + 1]
Limit[(n (-2 + n a[n]))/Log[n], n -> \[Infinity]]
Indeterminate
$RecursionLimit::reclim: Recursion depth of 1024 exceeded.
看 5:好像在慢慢长大。
|
|