|
本帖最后由 愚工688 于 2021-3-18 14:48 编辑
我对这些偶数的连乘式计算的用时为13秒钟。
我的素对下界计算值的相对误差都差距不大;
而剔除波动系数后得到的区域素对下界值infS(m),则呈现线性增大的特征,
实际偶数的素对值点的波动都在素对下界值infS(m)值点连线之上。
因此这样的方法是不是更容易说明猜想成立的必然性。
G(20210318) = 53459;
inf( 20210318 )≈ 53124.6 , Δ≈-0.006255,infS(m) = 52901.36 , k(m)= 1.00422
G(20210320) = 77744;
inf( 20210320 )≈ 76947.5 , Δ≈-0.010245,infS(m) = 52901.37 , k(m)= 1.45455
G(20210322) = 119919;
inf( 20210322 )≈ 118470.5 ,Δ≈-0.012079,infS(m) = 52901.37 , k(m)= 2.23946
G(20210324) = 53649;
inf( 20210324 )≈ 52952.6 , Δ≈-0.012981,infS(m) = 52901.38 , k(m)= 1.00097
G(20210326) = 55879;
inf( 20210326 )≈ 54929 , Δ≈-0.01700,infS(m) = 52901.38 , k(m)= 1.03833
G(20210328) = 107196;
inf( 20210328 )≈ 105802.8 ,Δ≈-0.012997,infS(m) = 52901.39 , k(m)= 2
G(20210330) = 89923;
inf( 20210330 )≈ 88672.8 , Δ≈-0.013903,infS(m) = 52901.39 , k(m)= 1.67619
G(20210332) = 56741;
inf( 20210332 )≈ 55842.1 , Δ≈-0.015842,infS(m) = 52901.4 , k(m)= 1.05559
G(20210334) = 108672;
inf( 20210334 )≈ 107109 , Δ≈-0.014383,infS(m) = 52901.4 , k(m)= 2.02469
G(20210336) = 53710;
inf( 20210336 )≈ 52901.4 , Δ≈,infS(m) = 52901.41 , k(m)= 1
inf( 20210338 )≈ 56602.9 , Δ≈,infS(m) = 52901.41 , k(m)= 1.06997
inf( 20210340 )≈ 141995.9 ,Δ≈,infS(m) = 52901.42 , k(m)= 2.68416
inf( 20210342 )≈ 53646.5 , Δ≈,infS(m) = 52901.43 , k(m)= 1.01408
inf( 20210344 )≈ 72930.9 , Δ≈,infS(m) = 52901.43 , k(m)= 1.37862
inf( 20210346 )≈ 115421.3 ,Δ≈,infS(m) = 52901.44 , k(m)= 2.18182
inf( 20210348 )≈ 56428.2 , Δ≈,infS(m) = 52901.44 , k(m)= 1.06667
inf( 20210350 )≈ 70758.1 , Δ≈,infS(m) = 52901.45 , k(m)= 1.33755
inf( 20210352 )≈ 105802.9 ,Δ≈,infS(m) = 52901.45 , k(m)= 2
inf( 20210354 )≈ 53005.8 , Δ≈,infS(m) = 52901.46 , k(m)= 1.00197
inf( 20210356 )≈ 52901.5 , Δ≈,infS(m) = 52901.46 , k(m)= 1
inf( 20210358 )≈ 126963.5 ,Δ≈,infS(m) = 52901.47 , k(m)= 2.4
inf( 20210360 )≈ 71036.1 , Δ≈,infS(m) = 52901.47 , k(m)= 1.3428
inf( 20210362 )≈ 54413 , Δ≈,infS(m) = 52901.48 , k(m)= 1.02857
inf( 20210364 )≈ 105803 , Δ≈,infS(m) = 52901.48 , k(m)= 2
inf( 20210366 )≈ 58779.4 , Δ≈,infS(m) = 52901.49 , k(m)= 1.11111
inf( 20210368 )≈ 53094.7 , Δ≈,infS(m) = 52901.49 , k(m)= 1.00365
inf( 20210370 )≈ 141981.3 ,Δ≈,infS(m) = 52901.50 , k(m)= 2.68388
inf( 20210372 )≈ 69269.1 , Δ≈,infS(m) = 52901.50 , k(m)= 1.3094
inf( 20210374 )≈ 53405.3 , Δ≈,infS(m) = 52901.51 , k(m)= 1.00952
inf( 20210376 )≈ 123045.5 ,Δ≈,infS(m) = 52901.51 , k(m)= 2.32594
inf( 20210378 )≈ 52901.5 , Δ≈,infS(m) = 52901.52 , k(m)= 1
inf( 20210380 )≈ 70535.4 , Δ≈,infS(m) = 52901.52 , k(m)= 1.33333
inf( 20210382 )≈ 112856.6 ,Δ≈,infS(m) = 52901.53 , k(m)= 2.13333
inf( 20210384 )≈ 53938.8 , Δ≈,infS(m) = 52901.54 , k(m)= 1.01961
inf( 20210386 )≈ 63599.3 , Δ≈,infS(m) = 52901.54 , k(m)= 1.20222
inf( 20210388 )≈ 121884.8 ,Δ≈,infS(m) = 52901.55 , k(m)= 2.30399
inf( 20210390 )≈ 73147.8 , Δ≈,infS(m) = 52901.55 , k(m)= 1.38272
inf( 20210392 )≈ 52901.6 , Δ≈,infS(m) = 52901.56 , k(m)= 1
inf( 20210394 )≈ 105942.9 ,Δ≈,infS(m) = 52901.56 , k(m)= 2.00264
inf( 20210396 )≈ 52901.6 , Δ≈,infS(m) = 52901.57 , k(m)= 1
inf( 20210398 )≈ 58689.0 , Δ≈,infS(m) = 52901.57 , k(m)= 1.1094
inf( 20210400 )≈ 169709.3 ,Δ≈,infS(m) = 52901.58 , k(m)= 3.20802
inf( 20210402 )≈ 52933.9 , Δ≈,infS(m) = 52901.58 , k(m)= 1.00061
inf( 20210404 )≈ 52948.8 , Δ≈,infS(m) = 52901.59 , k(m)= 1.00089
inf( 20210406 )≈ 105803.2 ,Δ≈,infS(m) = 52901.59 , k(m)= 2
inf( 20210408 )≈ 52901.6 , Δ≈,infS(m) = 52901.60 , k(m)= 1
inf( 20210410 )≈ 78759.2 , Δ≈,infS(m) = 52901.60 , k(m)= 1.48879
inf( 20210412 )≈ 107177.3 ,Δ≈,infS(m) = 52901.61 , k(m)= 2.02597
inf( 20210414 )≈ 67216.2 , Δ≈,infS(m) = 52901.61 , k(m)= 1.27059
G(20210416) = 58165;
inf( 20210416 )≈ 57348.3 , Δ≈-0.014041,infS(m) = 52901.62 , k(m)= 1.08406
G(20210418) = 108232;
inf( 20210418 )≈ 106660.8 ,Δ≈-0.014517,infS(m) = 52901.62 , k(m)= 2.01621
G(20210420) = 71943;
inf( 20210420 )≈ 70857.2 , Δ≈-0.015093,infS(m) = 52901.63 , k(m)= 1.33941
G(20210422) = 56098;
inf( 20210422 )≈ 55420.8 , Δ≈-0.012072,infS(m) = 52901.63 , k(m)= 1.04762
G(20210424) = 118069;
inf( 20210424 )≈ 116354.3 ,Δ≈-0.014523,infS(m) = 52901.64 , k(m)= 2.19945
G(20210426) = 53451
inf( 20210426 )≈ 52901.6 , Δ≈-0.010279,infS(m) = 52901.64 , k(m)= 1
time start =21:59:53 ,time end =22:00:06 ,time use =
对数据处理了一下,把电脑出错出来的几个高精度数据的尾数作了修正,以使得数据排列整齐些。
相对误差就少计算一些偶数,从头、尾的几个偶数可以看到相对误差值的变化不大。
|
|