|
\(记DE=k\ \ AE=1\ \ AB=k-1\ \ AD=\sqrt{k^2+1}\ \ BC=k(k-1)\)
1,\(主帖:AD=5,BC =\sqrt{90}, ∠ABD=45°\)
\(\frac{\sqrt{k^2+1}}{k(k-1)}=\frac{5}{\sqrt{90}}\ \ 解得k=3\)
\(AC=AD*(k-1)=10\)
2,\(改成:AD=BC =1, ∠ABD=30°\)
\(\frac{\sqrt{k^2+1}}{k(k*\sqrt{3}-1)}=\frac{1}{1}\)
\(AC=AD*(k*\sqrt{3}-1)\)
3,\(一般地:AD=a,BC =b, ∠ABD=\theta\)
\(\frac{\sqrt{k^2+1}}{k(k*\cot(\theta)-1)}=\frac{a}{b}\)
\(AC=AD*(k*\cot(\theta)-1)\) |
|