|
\(记∠CAB=A\ \ ∠ABC=B\ \ ∠BCA=C\ \ AB=\sin(C)\ \ AC=\sin(B)\ \ BC=\sin(A)\)
\(\frac{DB}{\sin(A)}=\frac{\sin(C)}{\sin(C+∠DBC)}\ \ \frac{EC}{\sin(A)}=\frac{\sin(B)}{\sin(B+∠ECB)}\ \ 1=\frac{\sin(A/2)\sin(B-∠DBC)\sin(∠ECB))}{\sin(A/2)\sin(∠DBC)\sin(C-∠ECB)}\)
\(说明:3个方程,\ 3个未知数(DB,EC,∠DBC),\ 有1个是已知数(∠ECB)。\) |
|