谢谢Nicolas2050!谢谢爬楼梯的计算程序!这次也不是母函数。
先回到 "杨辉三角"。
a,b,c,d,e 可取值 0,1,满足 a+b^2+c^3+d^4+e^5=2,(a,b,c,d,e)有几组不同的取法?
1,
1, 1,
1, 2, 1,
1, 3, 3, 1,
1, 4, 6, 4, 1,
1, 5, 10, 10, 5, 1,
1, 6, 15, 20, 15, 6, 1,
1, 7, 21, 35, 35, 21, 7, 1,
1, 8, 28, 56, 70, 56, 28, 8, 1,
1, 9, 36, 84, 126, 126, 84, 36, 9, 1,
1, 10, 45, 120, 210, 210, 252, 210, 45,10,1,
1, 11, 55, 165, 330, 462, 462, 330, 165, 55,11,1,
1, 12,66, 220,495, 792, 924, 792, 495,220, 66,12,1,
1,13,78,286,715,1287,1716,1716,1287,715,286,78,13,1,
........
说明 ,
譬如第 7 行:1,6,15,20,15,6,1,
\(满足a_{1}^1+a_{2}^2+a_{3}^3+a_{4}^4+a_{5}^5+a_{6}^6=0有 1 组不同的取法。\)
\(满足a_{1}^1+a_{2}^2+a_{3}^3+a_{4}^4+a_{5}^5+a_{6}^6=1有 6 组不同的取法。\)
\(满足a_{1}^1+a_{2}^2+a_{3}^3+a_{4}^4+a_{5}^5+a_{6}^6=2有 15 组不同的取法。\)
\(满足a_{1}^1+a_{2}^2+a_{3}^3+a_{4}^4+a_{5}^5+a_{6}^6=3有 20 组不同的取法。\)
\(满足a_{1}^1+a_{2}^2+a_{3}^3+a_{4}^4+a_{5}^5+a_{6}^6=4有 15 组不同的取法。\)
\(满足a_{1}^1+a_{2}^2+a_{3}^3+a_{4}^4+a_{5}^5+a_{6}^6=5有 6 组不同的取法。\)
\(满足a_{1}^1+a_{2}^2+a_{3}^3+a_{4}^4+a_{5}^5+a_{6}^6=6有 1 组不同的取法。\) |