|
我们有的是方法! 3楼的图。谢谢陆老师!
\(ΔAEF相似ΔAE_{1}F_{1},由下得\frac{AF}{E_{1}A}=\frac{\frac{\sin(\pi/4+\theta)}{\sin(\pi/4)}}{\sin(\pi/4+\theta)}=\frac{\sqrt{2}}{1}\)
\(1,在ΔE_{1}AE_{1}中,\ \ \ E_{1}A =\sin(\pi/4+\theta)\ \ \ AF_{1}=\cos(\theta)\)
\(2,在ΔF_{1}AB中,\ \ \ F_{1}A=\cos(\theta)\ \ \ AB=\frac{\sin(\pi/4+\theta)cos(\theta)}{\sin(\pi/4)}\)
\(3,在ΔBAF中,\ \ \ BA=\frac{\sin(\pi/4+\theta)cos(\theta)}{\sin(\pi/4)}\ \ \ AF=\frac{\sin(\pi/4+\theta)}{\sin(\pi/4)}\)
\(ΔAEF相似ΔAE_{1}F_{1},由下得\frac{AE}{F_{1}A}=\frac{\frac{cos(\theta)}{\sin(\pi/4)}}{cos(\theta)}=\frac{\sqrt{2}}{1}\)
\(1,在ΔF_{1}AE_{1}中,\ \ \ F_{1}A=\cos(\theta)\ \ \ AE_{1}=\sin(\pi/4+\theta)\)
\(2,在ΔE_{1}AD中,\ \ \ E_{1}A=\sin(\pi/4+\theta)\ \ \ AD=\frac{\sin(\pi/4+\theta)cos(\theta)}{\sin(\pi/4)}\)
\(3,在ΔDAE中,\ \ \ DA=\frac{\sin(\pi/4+\theta)cos(\theta)}{\sin(\pi/4)}\ \ \ AE=\frac{cos(\theta)}{\sin(\pi/4)}\)
\(ΔAEF相似ΔAE_{1}F_{1},由下得\frac{AF}{E_{1}A}=\frac{1}{\sin(\pi/4)}=\frac{\sqrt{2}}{1}\)
\(1,在ΔE_{1}AD中,\ \ \ E_{1}A=\sin(\pi/4)\ \ \ AD=\cos(\theta)=AB\)
\(2,在ΔBAF中,\ \ \ BA=\cos(\theta)\ \ \ AF=1\)
........ |
|