数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\large\textbf{jzkyllcjl 改革后的数学里空空如也}\)

[复制链接]
发表于 2022-4-7 15:33 | 显示全部楼层
本帖最后由 jzkyllcjl 于 2022-4-9 02:21 编辑
elim 发表于 2022-4-1 04:10
你的“数学”空空如也是事实.恩格斯的数学相当于今天的中学生,你jzkyllcjl 的数学畜生不如.


你骂人是无理的表现。 你污蔑恩格斯,应当尊重恩格斯的“数学家的方法常常奇怪的得到正确的结果,但他们……。他们忘掉了:全部所谓纯粹数学都是研究抽象的,它的一切数量严格说来都是想象的数量,一切抽象在推到极端时就变成谬妄或自己的反面。数学的无限是从现实中借来的,……,而只能从现实中来说明,……。而这样一来,问题就说明了[5]”的论述的改革,是消除了布劳威尔反例与连续统假设大难题的改革,是能解决桌子长度、身高、瞬时速度、圆周长等许多现实数量大小及其关系问题的改革。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-4-8 02:45 | 显示全部楼层
实话实说不是骂人。 你的“数学”空空如是事实.
恩格斯的数学相当于今天的中学生,你jzkyllcjl 的数学畜生不如
回复 支持 反对

使用道具 举报

发表于 2022-4-8 10:17 | 显示全部楼层
elim 发表于 2022-4-7 18:45
实话实说不是骂人。 你的“数学”空空如是事实.
恩格斯的数学相当于今天的中学生,你jzkyllcjl 的数学畜 ...

现行的《初等代数研究》教科书上册 87页提出了“称十进小数α=a0.a1a2……an…… 为实数[10]”的定义是概念混淆的定义。 事实上,这个定义中说的十进小数是以有尽位十进小数为项的无穷数列的简写,这个无穷数列是以自然数n为变数的无穷数列性质的变数而不是定数。
具体讲来,无尽小数有无尽循环与无尽不循环小数两种, 前者是从除不尽的分数得到的针对误差界数列{1/10^n}不足近似值的无穷数列,例如对除不尽的分数1/3,  由于1被3除永远除不尽,只能逐步得到针对误差界数列{1/10^n}不足近似值的无穷数列 0.3,0.33,0.333,……这个数列可以简写为0.333……,并称它为无尽循环小数,它的趋向性极限值才是分数1/3,但它本身永远小于1/3,不等于1/3,现行教科书的等式 0.333……=1/3 是把“趋向看做到达”的概念混淆性的错误等式。 对于无尽不混还小数存在与此类似的概念混淆,例如无理数√2 表示的对2的平方根,具有永远算不到底的性质,这个开方运算只能逐步得到:针对误差界数列{1/10^n}不足近似值的无穷数列1.4,1.41,1.414,……,这个数列可以简写为1.41421356……,这个数列的趋向性极限才是√2,但这个无尽不循环小数永远不等于√2。同理√3的无尽小数表达式1.732……永远不等于√3 ,它只是√3 的不足近似值无穷数列1.7,1.73,1.732,……的简写。总合起来,笔者称有理数与无理数都是理想实数,无尽小数为对应理想实数的针对误差界数列{1/10^n}全能不足近似值的无穷数列的简写;再根据“无穷无有穷尽、无有终了的事实”、无尽小数都具有永远算不到底、写不到底的性质,所以,对除不尽的分数与无理数都需要提出十进小数近似表达式。
对于圆周率π,它也是一个理想实数,它表示直径为1的圆周长。根据“直与曲的对立统一法则”可以将 将圆周等分为为6×2^m 等分之后,使用三角函数公式与半角公式算出的内接、外切多边形周长的数列,首先当m=0时,将圆周等分六等分,每一等分对应圆心角为60度 ,使用半角正弦、正切数值,得到圆内接、外切正六边形周长的准确到 的数字都是3。当m增大时,就会得到圆周率的准确到位数增多的十进小数近似值,例如,取m=18,,即将圆周分为1572864等分,计算出半圆心角正弦、正切后,得到圆内接、外切正六边形周长的准确到1/10^10 的数字都是3.1415926535 ;电子计算机问世以后,法国人计算到50万位数字,茅以升在《十万个为什么》中指出“50万位小数完了吗?没完。永远算不完的,这是个‘无尽’”的数啊!”,这说明:这个全能不足近似值的无穷数列具有永远算不到底的性质,但这个数列可以可以写作:3.1,3.14,3.141,……的以十进小数为项的康托尔实数定义中的基本数列;虽然这个数列可以叫做无尽不循环小数,但它是数列性质的变数,它不能等于 π,它的趋向性极限才是圆周率π 。这种叙述就消除了布劳威尔反例,改善了实数理论。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-4-8 23:06 | 显示全部楼层
吃狗屎的 jzkyllcjl 跟余元希商榷的结果是什么?跑这个论坛吃狗屎啼猿声共计遍了?啼猿声又用吗?

jzkyllcjl 的“数学”空空如是事实. 揭示 jzkyllcjl 吃狗屎是实话实说,不是骂他。jzkyllcjl 是自取其辱的模范,不用骂.
回复 支持 反对

使用道具 举报

发表于 2022-4-9 10:23 | 显示全部楼层
elim 发表于 2022-4-8 15:06
吃狗屎的 jzkyllcjl 跟余元希商榷的结果是什么?跑这个论坛吃狗屎啼猿声共计遍了?啼猿声又用吗?

jzkyl ...


现行的余元希《初等代数研究》教科书上册 87页提出了“称十进小数α=a0.a1a2……an…… 为实数[10]”的定义是概念混淆的定义。 事实上,这个定义中说的十进小数是以有尽位十进小数为项的无穷数列的简写,这个无穷数列是以自然数n为变数的无穷数列性质的变数而不是定数。
具体讲来,无尽小数有无尽循环与无尽不循环小数两种, 前者是从除不尽的分数得到的针对误差界数列{1/10^n}不足近似值的无穷数列,例如对除不尽的分数1/3,  由于1被3除永远除不尽,只能逐步得到针对误差界数列{1/10^n}不足近似值的无穷数列 0.3,0.33,0.333,……这个数列可以简写为0.333……,并称它为无尽循环小数,它的趋向性极限值才是分数1/3,但它本身永远小于1/3,不等于1/3,现行教科书的等式 0.333……=1/3 是把“趋向看做到达”的概念混淆性的错误等式。 对于无尽不混还小数存在与此类似的概念混淆,例如无理数√2 表示的对2的平方根,具有永远算不到底的性质,这个开方运算只能逐步得到:针对误差界数列{1/10^n}不足近似值的无穷数列1.4,1.41,1.414,……,这个数列可以简写为1.41421356……,这个数列的趋向性极限才是√2,但这个无尽不循环小数永远不等于√2。同理√3的无尽小数表达式1.732……永远不等于√3 ,它只是√3 的不足近似值无穷数列1.7,1.73,1.732,……的简写。总合起来,笔者称有理数与无理数都是理想实数,无尽小数为对应理想实数的针对误差界数列{1/10^n}全能不足近似值的无穷数列的简写;再根据“无穷无有穷尽、无有终了的事实”、无尽小数都具有永远算不到底、写不到底的性质,所以,对除不尽的分数与无理数都需要提出十进小数近似表达式。
对于圆周率π,它也是一个理想实数,它表示直径为1的圆周长。根据“直与曲的对立统一法则”可以将 将圆周等分为为6×2^m 等分之后,使用三角函数公式与半角公式算出的内接、外切多边形周长的数列,首先当m=0时,将圆周等分六等分,每一等分对应圆心角为60度 ,使用半角正弦、正切数值,得到圆内接、外切正六边形周长的准确到 的数字都是3。当m增大时,就会得到圆周率的准确到位数增多的十进小数近似值,例如,取m=18,,即将圆周分为1572864等分,计算出半圆心角正弦、正切后,得到圆内接、外切正六边形周长的准确到1/10^10 的数字都是3.1415926535 ;电子计算机问世以后,法国人计算到50万位数字,茅以升在《十万个为什么》中指出“50万位小数完了吗?没完。永远算不完的,这是个‘无尽’”的数啊!”,这说明:这个全能不足近似值的无穷数列具有永远算不到底的性质,但这个数列可以可以写作:3.1,3.14,3.141,……的以十进小数为项的康托尔实数定义中的基本数列;虽然这个数列可以叫做无尽不循环小数,但它是数列性质的变数,它不能等于 π,它的趋向性极限才是圆周率π 。这种叙述就消除了布劳威尔反例,改善了实数理论。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-4-9 10:25 | 显示全部楼层
吃狗屎的 jzkyllcjl 跟余元希商榷的结果是什么?跑这个论坛吃狗屎啼猿声共计遍了?啼猿声又用吗?

jzkyllcjl 的“数学”空空如是事实. 揭示 jzkyllcjl 吃狗屎是实话实说,不是骂他。jzkyllcjl 是自取其辱的模范,不用骂.
回复 支持 反对

使用道具 举报

发表于 2022-4-9 10:43 | 显示全部楼层
elim 发表于 2022-4-7 04:06
jzkyllcjl 什么都能扯,就是拿不出他建立的数学中货真价实的数学定理。

余元希的实数定义无法解决elim的身高是不是无理数的问题,无法解决布劳威尔反例。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-4-9 15:10 | 显示全部楼层
jzkyllcjl 的腚臆能解决这个问题? 身高问题是测量问题,不是数学问题。吃狗屎的 jzkyllcjl 四则运算缺除法是他的狗屎堆数学不可解决的问题。
、、
jzkyllcjl "解决"了他散布的谣言,只配被人类抛弃。
回复 支持 反对

使用道具 举报

发表于 2022-4-10 08:38 | 显示全部楼层
elim 发表于 2022-4-9 07:10
jzkyllcjl 的腚臆能解决这个问题? 身高问题是测量问题,不是数学问题。吃狗屎的 jzkyllcjl 四则运算缺除法 ...

现行的余元希《初等代数研究》教科书上册 87页提出了“称十进小数α=a0.a1a2……an…… 为实数[10]”的定义是概念混淆的定义。 事实上,这个定义中说的十进小数是以有尽位十进小数为项的无穷数列的简写,这个无穷数列是以自然数n为变数的无穷数列性质的变数而不是定数。
具体讲来,无尽小数有无尽循环与无尽不循环小数两种, 前者是从除不尽的分数得到的针对误差界数列{1/10^n}不足近似值的无穷数列,例如对除不尽的分数1/3,  由于1被3除永远除不尽,只能逐步得到针对误差界数列{1/10^n}不足近似值的无穷数列 0.3,0.33,0.333,……这个数列可以简写为0.333……,并称它为无尽循环小数,它的趋向性极限值才是分数1/3,但它本身永远小于1/3,不等于1/3,现行教科书的等式 0.333……=1/3 是把“趋向看做到达”的概念混淆性的错误等式。 对于无尽不混还小数存在与此类似的概念混淆,例如无理数√2 表示的对2的平方根,具有永远算不到底的性质,这个开方运算只能逐步得到:针对误差界数列{1/10^n}不足近似值的无穷数列1.4,1.41,1.414,……,这个数列可以简写为1.41421356……,这个数列的趋向性极限才是√2,但这个无尽不循环小数永远不等于√2。同理√3的无尽小数表达式1.732……永远不等于√3 ,它只是√3 的不足近似值无穷数列1.7,1.73,1.732,……的简写。总合起来,笔者称有理数与无理数都是理想实数,无尽小数为对应理想实数的针对误差界数列{1/10^n}全能不足近似值的无穷数列的简写;再根据“无穷无有穷尽、无有终了的事实”、无尽小数都具有永远算不到底、写不到底的性质,所以,对除不尽的分数与无理数都需要提出十进小数近似表达式。
对于圆周率π,它也是一个理想实数,它表示直径为1的圆周长。根据“直与曲的对立统一法则”可以将 将圆周等分为为6×2^m 等分之后,使用三角函数公式与半角公式算出的内接、外切多边形周长的数列,首先当m=0时,将圆周等分六等分,每一等分对应圆心角为60度 ,使用半角正弦、正切数值,得到圆内接、外切正六边形周长的准确到 的数字都是3。当m增大时,就会得到圆周率的准确到位数增多的十进小数近似值,例如,取m=18,,即将圆周分为1572864等分,计算出半圆心角正弦、正切后,得到圆内接、外切正六边形周长的准确到1/10^10 的数字都是3.1415926535 ;电子计算机问世以后,法国人计算到50万位数字,茅以升在《十万个为什么》中指出“50万位小数完了吗?没完。永远算不完的,这是个‘无尽’”的数啊!”,这说明:这个全能不足近似值的无穷数列具有永远算不到底的性质,但这个数列可以可以写作:3.1,3.14,3.141,……的以十进小数为项的康托尔实数定义中的基本数列;虽然这个数列可以叫做无尽不循环小数,但它是数列性质的变数,它不能等于 π,它的趋向性极限才是圆周率π 。这种叙述就消除了布劳威尔反例,改善了实数理论。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-4-10 12:21 | 显示全部楼层
吃狗屎的 jzkyllcjl 楼上的猿声啼了无数遍了。不懂集合论,不懂实数理论,不识数,篡改数学概念终究不成气候,这辈子一事无成,就算有下辈子也同样下场。

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-23 05:55 , Processed in 0.091259 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表