|
现行的《初等代数研究》教科书上册 87页提出了“称十进小数 为实数[10]”的定义。这个定义使用了“无限是完城了的整体”的违背事实的实无穷观点,所以这个定义是错误的。应当根据“理想与现实、无限与有限的对立统一法则”提出如下的实数定义与公理。
定义6(理想实数的非形式化定义): 现实数量的大小(包括现实线段、时段长度、角度大小)具有可变性、测不准性;但在相对性与暂时性的忽略微小误差的抽象方法下,可以认为:每一个现实数量都有确定的大小。因此,可以提出:现实数量大小(例如线段、时段长度、角度大小)的没有误差的绝对准表达符号叫做理想实数(简称为实数)。其中不能用有理数绝对准表达的理想实数都叫无理数(例如:π与 根号2)。
公理1(实数公理):每一个理想实数α,都存在着以它为趋向性极限值的康托尔的以有理数(包括十进小数)为项的基本数列,除0以外的每一个理想正实数 都存在唯一的满足条件 的,以n位十进小数 为通项的、理想实数 的全能不足近似值的康托儿基本数列,这个基本数列可以简写为无尽小数。但与文献[10]87页的:“称无尽小数为实数”的定义不同,根据通项满足的条件1/10^n,就可以知道:无尽小数的趋向性极限才真正是理想实数。所有无尽小数都具有“①无尽是按照一定法则无限延续下去的意义;②无限延续是永远延续不到底的操作”的对立统一的两个性质。这种基本数列收敛于这个理想实数 。反之,每一个康托尔实数理论中基本数列(或称以有理数为项的柯西基本数列),都有无限延续下去的通项表达式,都存在一个唯一的理想实数 (简称为实数)为其极限,等价(也称全能近似相等)的康托儿基本数列的极限相同;而且全能近似数列具有永远算不到底的性质,只要算到满足具体问题的确定的具体误差界的足够准近似值就行了。
有了上述定义与公理就可以更好的阐述实数理论的有关问题,例如,根据上述定义,就应当提出圆周率的定义是:圆周长L与直径长D的比值,圆周率 等于直径为1的圆周长;根据上述公理,就可以提出π 的针对误差界序列 1/10^n的全能不足近似值无穷数列3.1,3.14,3.141,……,这个数列可以简写为3.141……,并称他为无尽不循环小数,但无尽小数都是无穷数列性质的变数,而不是定数。 |
|