数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: cuikun-186

再谈用数学归纳法证明:每个大于等于9的奇数都是3+两个奇素数之和

[复制链接]
 楼主| 发表于 2022-5-28 07:43 | 显示全部楼层
数学归纳法的逻辑是:
一、a1正确;
二、假设an正确(这里只是假设,不是证明);
三、导出a(n+1)正确。
第三步是第二步的导出。不能再用假设(等待证明的结论)了。
如果你认为第三步是对的,你的证明就是正确的。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-28 09:31 | 显示全部楼层
大道至简亘古不变!
但不是所有的人都懂得!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-28 22:05 | 显示全部楼层
有人看不懂,有人无知忘说!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-29 07:24 | 显示全部楼层
本帖最后由 cuikun-186 于 2022-6-28 09:53 编辑

每个大于等于9的奇数都是3+两个奇素数之和
崔坤
中国青岛即墨,266200,E-mail:cwkzq@126.com
摘要: 数学家刘建亚在《哥德巴赫猜想与潘承洞》中说:“我们可以把这个问题反过来思考, 已知奇数N可以表成三个素数之和, 假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3, 那么我们也就证明了偶数的哥德巴赫猜想。”, 直到2013年才有秘鲁数学家哈罗德贺欧夫格特彻底证明了三素数定理。
关键词:三素数定理,奇素数,加法交换律结合律
中图分类号:O156 文献标识码: A
证明:
根据2013年秘鲁数学家哈罗德·贺欧夫格特已经彻底地证明了的三素数定理:
每个大于等于9的奇数都是三个奇素数之和,每个奇素数都可以重复使用。
它用下列公式表示:Q是每个≥9的奇数,奇素数:q1≥3,q2≥3,q3≥3,
则Q=q1+q2+q3
根据加法交换律结合律,不妨设:q1≥q2≥q3≥3,
则Q-3=q1+q2+q3-3 显见:有且仅有q3=3时,Q-3=q1+q2,否则,奇数9,11,13都是三素数定理的反例。
即每个大于等于6的偶数都是两个奇素数之和
推论Q=3+q1+q2,即每个大于等于9的奇数都是3+两个奇素数之和。
我们运用数学归纳法做如下证明:
给出首项为9,公差为2的等差数列:Qn=7+2n:{9,11,13,15,17,.....}
Q1= 9
Q2= 11
Q3= 13
Q4= 15
.......
Qn=7+2n=3+q1+q2,(其中奇素数q1≥q2≥3,奇数Qn≥9,n为正整数)
数学归纳法:
第一步:当n=1时 ,Q1=9 时 ,Q1=9=3+q1+q2=3+3+3成立
第二步:假设 :n=k时,Qk=3+qk1+qk2成立,(奇素数:qk1≥3,qk2≥3)
第三步:当n=k+1时,Q(k+1)=Qk+2=3+qk1+qk2+2,
此时有且仅有2种情况:
A情况:qk1+2不为素数或者qk2+2不为素数再或者(qk1+2)与(qk2+2)同时不为素数时,Qk+2=Q(k+1)=5+qk1+qk2
即每个大于等于11的奇数都是5+两个奇素数之和,
这也就同步证明了每个大于等于6的偶数都是两个奇素数之和

即与“每个大于等于9的奇数都是3+两个奇素数之和”是等价的
即Qk+2=3+qk1+qk2+2=5+qk1+qk2=3+qk3+qk4,(奇素数:qk3≥3,qk4≥3)
B情况:
(1)若qk1+2为qk1的孪生素数P,
则:Qk+2=3+P+qk2,即每个大于等于11的奇数都是3+两个奇素数之和
(2) 若qk2+2为qk2的孪生素数P”,
则:Qk+2=3+P”+qk1,即每个大于等于11的奇数都是3+两个奇素数之和
综上所述,对于任意正整数n命题均成立,即:每个大于等于9的奇数都是3+两个奇素数之和
结论:每个大于等于9的奇数都是3+两个奇素数之和,Q=3+q1+q2,(奇素数q1≥q2≥3,奇数Q≥9)


参考文献:
[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]
[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-29 09:50 | 显示全部楼层
本帖最后由 cuikun-186 于 2022-6-28 09:53 编辑

每个大于等于9的奇数都是3+两个奇素数之和
崔坤
中国青岛即墨,266200,E-mail:cwkzq@126.com
摘要: 数学家刘建亚在《哥德巴赫猜想与潘承洞》中说:“我们可以把这个问题反过来思考, 已知奇数N可以表成三个素数之和, 假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3, 那么我们也就证明了偶数的哥德巴赫猜想。”, 直到2013年才有秘鲁数学家哈罗德贺欧夫格特彻底证明了三素数定理。
关键词:三素数定理,奇素数,加法交换律结合律
中图分类号:O156 文献标识码: A
证明:
根据2013年秘鲁数学家哈罗德·贺欧夫格特已经彻底地证明了的三素数定理:
每个大于等于9的奇数都是三个奇素数之和,每个奇素数都可以重复使用。
它用下列公式表示:Q是每个≥9的奇数,奇素数:q1≥3,q2≥3,q3≥3,
则Q=q1+q2+q3
根据加法交换律结合律,不妨设:q1≥q2≥q3≥3,
则Q-3=q1+q2+q3-3 显见:有且仅有q3=3时,Q-3=q1+q2,否则,奇数9,11,13都是三素数定理的反例。
即每个大于等于6的偶数都是两个奇素数之和
推论Q=3+q1+q2,即每个大于等于9的奇数都是3+两个奇素数之和。
我们运用数学归纳法做如下证明:
给出首项为9,公差为2的等差数列:Qn=7+2n:{9,11,13,15,17,.....}
Q1= 9
Q2= 11
Q3= 13
Q4= 15
.......
Qn=7+2n=3+q1+q2,(其中奇素数q1≥q2≥3,奇数Qn≥9,n为正整数)
数学归纳法:
第一步:当n=1时 ,Q1=9 时 ,Q1=9=3+q1+q2=3+3+3成立
第二步:假设 :n=k时,Qk=3+qk1+qk2成立,(奇素数:qk1≥3,qk2≥3)
第三步:当n=k+1时,Q(k+1)=Qk+2=3+qk1+qk2+2,
此时有且仅有2种情况:
A情况:qk1+2不为素数或者qk2+2不为素数再或者(qk1+2)与(qk2+2)同时不为素数时,Qk+2=Q(k+1)=5+qk1+qk2
即每个大于等于11的奇数都是5+两个奇素数之和,
这也就同步证明了每个大于等于6的偶数都是两个奇素数之和
即与“每个大于等于9的奇数都是3+两个奇素数之和”是等价的
即Qk+2=3+qk1+qk2+2=5+qk1+qk2=3+qk3+qk4,(奇素数:qk3≥3,qk4≥3)
B情况:
(1)若qk1+2为qk1的孪生素数P,
则:Qk+2=3+P+qk2,即每个大于等于11的奇数都是3+两个奇素数之和
(2) 若qk2+2为qk2的孪生素数P”,
则:Qk+2=3+P”+qk1,即每个大于等于11的奇数都是3+两个奇素数之和
综上所述,对于任意正整数n命题均成立,即:每个大于等于9的奇数都是3+两个奇素数之和
结论:每个大于等于9的奇数都是3+两个奇素数之和,Q=3+q1+q2,
(奇素数q1≥q2≥3,奇数Q≥9)


参考文献:
[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]
[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-29 11:01 | 显示全部楼层
告诉大家一个戳心真相:

你做得再好,
也会遇上跟你合不来的人,
他们曲解你的意思,
甚至不怀好意地“抬杠”,
将两人处在针锋相对的位置上。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-6-24 14:50 | 显示全部楼层
本帖最后由 cuikun-186 于 2022-6-28 11:23 编辑

众所周知:
103=3+47+53只是103的众算式中的之一,还至少有6个单记法表达式:
103=3+3+97
103=3+11+89
103=3+17+83
103=3+29+71
103=3+41+59
103=3+47+53
上列6个算式+2
可得:
105=3+3+97+2=3+5+97(是3+两个奇素数之和),这里(3,5)是孪生素数
105=3+11+89+2=3+13+89(是3+两个奇素数之和),这里(11,13)是孪生素数
105=3+17+83+2=3+19+83(是3+两个奇素数之和),这里(17,19)是孪生素数
105=3+29+71+2=3+31+71(是3+两个奇素数之和),这里(29,31)是孪生素数
105=3+41+59+2=3+43+59(是3+两个奇素数之和),这里(41,43)是孪生素数
105=3+47+53+2=5+47+53(是5+两个奇素数之和)
这些都是真值,客观事实!!!!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-6-24 17:22 | 显示全部楼层
某人的A情况,在假设103是3+两个奇素数和的前提下,无法推理出105是否是3+两个奇素数之和。“
***************
众所周知:
103=3+47+53只是103的众算式中的之一,还至少有6个单记法表达式:
103=3+3+97
103=3+11+89
103=3+17+83
103=3+29+71
103=3+41+59
103=3+47+53
上列6个算式+2
可得:
105=3+3+97+2=3+5+97(是3+两个奇素数之和)
105=3+11+89+2=3+13+89(是3+两个奇素数之和)
105=3+17+83+2=3+19+83(是3+两个奇素数之和)
105=3+29+71+2=3+31+71(是3+两个奇素数之和)
105=3+41+59+2=3+43+59(是3+两个奇素数之和)
105=3+47+53+2=5+47+53(是5+两个奇素数之和)
这些都是真值,客观事实!!!!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-6-25 10:45 | 显示全部楼层
数学归纳法的逻辑是:
一、a1正确;
二、假设an正确(这里只是假设,不是证明);
三、导出a(n+1)正确。
第三步是第二步的导出。不能再用假设(等待证明的结论)了。
如果你认为第三步是对的,你的证明就是正确的。
回复 支持 反对

使用道具 举报

发表于 2022-6-25 19:58 | 显示全部楼层
标题:再谈数学归纳法证明:每个大于等于9的奇数都是3+两个奇素数之和

再谈也枉然,数学归纳法是一种用来证明与自然数有关的命题的方法,它不会自动地去证明任何命题,只能靠人去使用它。所以标题应加一个“用”字。这样可能就不是100谈了。
标题应改为:再谈用数学归纳法证明:每个大于等于9的奇数都是3+两个奇素数之和

点评

今后请先生多多指教!  发表于 2022-6-25 21:49
波斯猫猫先生非常严谨,我已经把标题修改!  发表于 2022-6-25 21:48
很好!谢谢您的支持!  发表于 2022-6-25 21:46
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-4 21:16 , Processed in 0.092944 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表