|

楼主 |
发表于 2022-6-28 09:30
|
显示全部楼层
本帖最后由 cuikun-186 于 2022-6-28 09:59 编辑
数学归纳法的逻辑是:
一、a1正确;
二、假设an正确(这里只是假设,不是证明);
三、导出a(n+1)正确。
第三步是第二步的导出。不能再用假设(等待证明的结论)了。
如果你认为第三步是对的,你的证明就是正确的。
请看:
一、a1正确:第一步:当n=1时 ,Q1=9 时 ,Q1=9=3+q1+q2=3+3+3,成立
二、假设an正确(这里只是假设,不是证明);
第二步:假设 :n=k时,Qk=3+qk1+qk2成立,(奇素数:qk1≥3,qk2≥3)
三、导出a(n+1)正确。
第三步:当n=k+1时,Q(k+1)=Qk+2=3+qk1+qk2+2,
此时有且仅有2种情况:
A情况:qk1+2不为素数,或者qk2+2不为素数,再或者(qk1+2)与(qk2+2)同时不为素数时,
Qk+2=Q(k+1)=5+qk1+qk2
即每个大于等于11的奇数都是5+两个奇素数之和,
而这个结论与“每个大于等于9的奇数都是3+两个奇素数之和”是等价的
即Qk+2=3+qk1+qk2+2=5+qk1+qk2=3+qk3+qk4,(奇素数:qk3≥3,qk4≥3)
B情况:
(1)若qk1+2为qk1的孪生素数P,
则:Qk+2=3+P+qk2,即每个大于等于11的奇数都是3+两个奇素数之和
(2) 若qk2+2为qk2的孪生素数P”,
则:Qk+2=3+P”+qk1,即每个大于等于11的奇数都是3+两个奇素数之和
总结:
综上所述,对于任意正整数n命题均成立,
即:每个大于等于9的奇数都是3+两个奇素数之和
结论:每个大于等于9的奇数都是3+两个奇素数之和,
Q=3+q1+q2,(奇素数q1≥q2≥3,奇数Q≥9)
参考文献:
[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]
[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]
|
|