|
本帖最后由 愚工688 于 2022-11-3 14:06 编辑
用Sp( m *)=Sp( m )/(1+μ) 来计算350亿-550亿区间偶数的素对数量,这里的μ=0.156494,
G(50000000000) = 79004202, Sp( 50000000000 *) = 79004203.9 ,Δ≈ 0.000000024
G(50000000002) = 59262284, Sp( 50000000002 *) = 59256525.1 ,Δ≈-0.000097176
G(50000000004) = 118490110, Sp( 50000000004 *) = 118506305.9 ,Δ≈ 0.000136686
G(50000000006) = 68100948, Sp( 50000000006 *) = 68107072.3 ,Δ≈ 0.000089930
G(50000000008) = 71099519, Sp( 50000000008 *) = 71103783.5 ,Δ≈ 0.000059979
G(50000000010) = 157988586, Sp( 50000000010 *) = 158008407.8 ,Δ≈ 0.000125463
G(40000000000) = 64411146 ;Sp( 40000000000 *)= 64391979.2 , Δ≈-0.000298 , k(m)= 1.33333
G(40000000002) = 102364420 ;Sp( 40000000002 *)= 102332549.1 , Δ≈-0.000311 , k(m)= 2.11895
G(40000000004) = 48813213 ;Sp( 40000000004 *)= 48797331.7 , Δ≈-0.000325 , k(m)= 1.01042
G(40000000006) = 48934047 ;Sp( 40000000006 *)= 48921179 , Δ≈-0.000263 , k(m)= 1.01299
G(40000000008) = 96619954 ;Sp( 40000000008 *)= 96587968.8 , Δ≈-0.000331 , k(m)= 2
G(40000000010) = 66369957 ;Sp( 40000000010 *)= 66349495.3 , Δ≈-0.000308 , k(m)= 1.37387
G(40000000012) = 57974268 ;Sp( 40000000012 *)= 57952781.3 , Δ≈-0.000371 , k(m)= 1.2
G(40000000014) = 105425521 ;Sp( 40000000014 *)= 105397036.7 , Δ≈-0.000270 , k(m)= 2.18241
G(40000000016) = 48301184 ;Sp( 40000000016 *)= 48293984.4 , Δ≈-0.000149 , k(m)= 1
G(40000000018) = 54615221 ;Sp( 40000000018 *)= 54601385.9 , Δ≈-0.000253 , k(m)= 1.1306
G(40000000020) = 128835124 ;Sp( 40000000020 *)= 128783958.4 , Δ≈-0.000397 , k(m)= 2.66667
G(40000000022) = 49015721 ;Sp( 40000000022 *)= 48999997.9 , Δ≈-0.000321 , k(m)= 1.01462
G(40000000024) = 48636356 ;Sp( 40000000024 *)= 48622514.9 , Δ≈-0.000285 , k(m)= 1.0068
G(40000000026) = 123671238 ;Sp( 40000000026 *)= 123632600.1 , Δ≈-0.000312 , k(m)= 2.56
G(40000000028) = 50633750 ;Sp( 40000000028 *)= 50616048.6 , Δ≈-0.000350 , k(m)= 1.04808
G(40000000030) = 64425853 ;Sp( 40000000030 *)= 64395079.2 , Δ≈-0.000478 , k(m)= 1.3334
Sp( 40000000000 ) = .86468238863927 *[( 40000000000 /2 -2)]*p(m) = 64391979.2
Sp( 40000000002 ) = .86468238863927 *[( 40000000002 /2 -2)]*p(m) = 102332549.1
Sp( 40000000004 ) = .86468238863927 *[( 40000000004 /2 -2)]*p(m) = 48797331.7
Sp( 40000000006 ) = .86468238863927 *[( 40000000006 /2 -2)]*p(m) = 48921179
Sp( 40000000008 ) = .86468238863927 *[( 40000000008 /2 -2)]*p(m) = 96587968.8
Sp( 40000000010 ) = .86468238863927 *[( 40000000010 /2 -2)]*p(m) = 66349495.3
Sp( 40000000012 ) = .86468238863927 *[( 40000000012 /2 -2)]*p(m) = 57952781.3
Sp( 40000000014 ) = .86468238863927 *[( 40000000014 /2 -2)]*p(m) = 105397036.7
Sp( 40000000016 ) = .86468238863927 *[( 40000000016 /2 -2)]*p(m) = 48293984.4
Sp( 40000000018 ) = .86468238863927 *[( 40000000018 /2 -2)]*p(m) = 54601385.9
Sp( 40000000020 ) = .86468238863927 *[( 40000000020 /2 -2)]*p(m) = 128783958.4
Sp( 40000000022 ) = .86468238863927 *[( 40000000022 /2 -2)]*p(m) = 48999997.9
Sp( 40000000024 ) = .86468238863927 *[( 40000000024 /2 -2)]*p(m) = 48622514.9
Sp( 40000000026 ) = .86468238863927 *[( 40000000026 /2 -2)]*p(m) = 123632600.1
Sp( 40000000028 ) = .86468238863927 *[( 40000000028 /2 -2)]*p(m) = 50616048.6
Sp( 40000000030 ) = .86468238863927 *[( 40000000030 /2 -2)]*p(m) = 64395079.2
注:修正系数 1/(1+μ)=1/1.156494= .86468238863927,p(m)是素数连乘式子,随各个偶数含有素因子的不同而变化。
其实使用修正系数的方法,以前没有计算机的时代普遍使用四位数学用表的时代比较使用的多,查得的值还要根据尾数的值查出修正值。当然我使用的修正系数,不是针对某个偶数的,而是针对某个大区域的全部偶数的素对数量的计算,否则就没有实用意义了。
G(35000000000) = 68412556, Sp(35000000000 *) = 68356579.9 ,Δ≈-0.000818214,
G(35000000002) = 48894586, Sp(35000000002 *) = 48850013.3 ,Δ≈-0.000911608,
G(35000000004) = 85531578, Sp(35000000004 *) = 85455556.4 ,Δ≈-0.000888813,
G(35000000006) = 42755368, Sp(35000000006 *) = 42723589.9 ,Δ≈-0.000743254,
|
|