|

楼主 |
发表于 2022-10-23 11:12
|
显示全部楼层
本帖最后由 愚工688 于 2022-10-23 03:20 编辑
把偶数M拆分的两个数可以表示成A±x,(M=2A),≤√(M-2)的所有素数为2、3、5、…、r;
其中能够形成素数对的A±x有下面两种情况:
a):满足 A±x 不能被≤√(M-2)的所有素数为2、3、5、…、r 整除。这样的x值的数量记作 S1(m);
b):满足 A+x 不能被≤√(M-2)的所有素数为2、3、5、 …、r 整除,而 A-x 等于≤√(M-2)的某个奇素数。这样的x值的数量记作 S2(m)。
偶数M表为两个素数和的全部表法数 S(m)= S1(m)+ S2(m)
其中符合条件a的素对数量S1,就是由不与偶数2A的半值A的余数构成同余关系的变量x组成的素对{A-x,+,A+x},这是由自然数除以素数的余数呈现周期性变化的规律性缩决定了变量x必然存在的,对于大于5的任意偶数没有例外;
而满足条件b的素对数量S2,则不一定存在,即S2没有计算特性。S2>=0;
因此任何人说能够正确计算出任意偶数的素数对的数量,除了虚假以外,就是无知造成的。
而使用素对筛选软件得到的素对数量真值,则是累计计数得到的,不是计算得到的。
但是比较高精度的计算出大偶数的素数对数量,还是能够成为可能的。
下面我使用连乘式*修正系数的计算式所计算的一连续偶数的素对下界计算值,与真值的相对误差:
G(10000000000) = 18200488;
inf( 10000000000 )≈ 18192520.4 , Δ≈-0.0004378,infS(m)= 13644390.26 , k(m)= 1.33333
G(10000000002) = 27302893;
inf( 10000000002 )≈ 27288780.5 , Δ≈-0.0005169,infS(m)= 13644390.27 , k(m)= 2
G(10000000004) = 13655366;
inf( 10000000004 )≈ 13644390.3 , Δ≈-0.0008038,infS(m)= 13644390.27 , k(m)= 1
G(10000000006) = 13742400;
inf( 10000000006 )≈ 13737209.3 , Δ≈-0.0003777,infS(m)= 13644390.27 , k(m)= 1.0068
G(10000000008) = 27563979;
inf( 10000000008 )≈ 27548673.7 , Δ≈-0.0005553,infS(m)= 13644390.27 , k(m)= 2.01905
G(10000000010) = 28031513
inf( 10000000010 )≈ 28018960 , Δ≈-0.0004478,infS(m)= 13644390.28 , k(m)= 2.05351
G(10000000012) = 13654956;
inf( 10000000012 )≈ 13647157.3 , Δ≈-0.0005711,infS(m)= 13644390.28 , k(m)= 1.0002
G(10000000014) = 27361348;
inf( 10000000014 )≈ 27348233.3 , Δ≈-0.0004793,infS(m)= 13644390.28 , k(m)= 2.00436
G(10000000016) = 13708223;
inf( 10000000016 )≈ 13701479.8 , Δ≈-0.0004919,infS(m)= 13644390.29 , k(m)= 1.00418
G(10000000018) = 13781412;
inf( 10000000018 )≈ 13776842.4 , Δ≈-0.0003316,infS(m)= 13644390.29 , k(m)= 1.00971
G(10000000020) = 37335123;
inf( 10000000020 )≈ 37319942.4 , Δ≈-0.0004066,infS(m)= 13644390.29 , k(m)= 2.73519
G(10000000022) = 13653503;
inf( 10000000022 )≈ 13646792.1 , Δ≈-0.0004915,infS(m)= 13644390.29 , k(m)= 1.00018
G(10000000024) = 16587802;
inf( 10000000024 )≈ 16575407.5 , Δ≈-0.0007472,infS(m)= 13644390.3 , k(m)= 1.21481
G(10000000026) = 28871083;
inf( 10000000026 )≈ 28857101.3 , Δ≈-0.0004843,infS(m)= 13644390.3 , k(m)= 2.11494
G(10000000028) = 13665084;
inf( 10000000028 )≈ 13661050.1 , Δ≈-0.0002952,infS(m)= 13644390.3 , k(m)= 1.00122
G(10000000030) = 19127680;
inf( 10000000030 )≈ 19121318.9 , Δ≈-0.0003326,infS(m)= 13644390.3 , k(m)= 1.40141
G(10000000032) = 32355048;
inf( 10000000032 )≈ 32342258.5 , Δ≈-0.0003953,infS(m)= 13644390.31 , k(m)= 2.37037
在具有波动性的偶数M的素对下界计算值 inf( m)的相对误差绝对值小于0.001的情况下,inf( m )图形几乎与真值 G(M)的图形重合。大小变化规律几乎完全一致。
而偶数表法数的区域下界函数值infS(m)则随着偶数的增大,始终缓慢的攀升,表明大偶数的表法数下限值是逐渐上升的。
|
|