|
当然修正系数1/(1+μ)的μ取0.21是适用全部大于5的偶数的情况,主要是防止小偶数时出现正相对误差的情况。
例如;
r=7的偶数区域(即7^2+3=52 起始的区域,下同):
S( 52 )= 3 Sp(m)≈ 1.714 δ(m)≈-.429 K(m)= 1 infS(m)≈ 1.41
因为 infS(52)≈ 1.41,向上取整= 2,
所以:任意≥52 的偶数表为两个素数之和的表法数不少于2;
实际低位值偶数有 :S(68)=2 ;
r=11的偶数区域(即11^2+3=124 起始的区域,下同):
M= 124 S(m)= 5 Sp(m)≈ 3.506 δ(m)≈-.299 K(m)= 1 infS(m)≈ 2.9
因为 infS(124)≈ 2.9,向上取整= 3,
所以:任意≥124 的偶数表为两个素数之和的表法数不少于3;
实际低位值偶数有 :S(128)= 3;
r=13的偶数区域:
M= 172 S(m)= 6 Sp(m)≈ 4.154 δ(m)≈-.308 K(m)= 1 infS(m)≈ 3.43
因为 infS(172)≈ 3.43,向上取整= 4,
所以:任意≥172 的偶数表为两个素数之和的表法数不少于4;
实际低位值偶数有 :S(188)= 5;
r=17的偶数区域与r=19的偶数区域:
M= 292 S(m)= 8 Sp(m)≈ 6.283 δ(m)≈-.215 K(m)= 1 infS(m)≈ 5.19
M= 364 S(m)= 14 Sp(m)≈ 9.199 δ(m)≈-.343 K(m)= 1.309 infS(m)≈ 5.81
因为 infS(292)≈ 5.19,向上取整= 6,
所以:任意≥292 的偶数表为两个素数之和的表法数不少于6 ;
实际低位值偶数有 :S( 332 )= 6 ;
……
r=31的偶数区域:
M= 964 S(m)= 18 Sp(m)≈ 14.902 δ(m)≈-.172 K(m)= 1 infS(m)≈ 12.31
因为 infS(964)≈ 12.3,向上取整= 13,
所以:任意≥964 的偶数表为两个素数之和的表法数不少于13;
实际低位值偶数有:S( 992 )= 13 ;
……
可见在多个区域准确的确定了素对的下界值。
当然它的计算值精度一般讲起来是不太高的,尤其大偶数的情况。
若需要在大偶数情况时得到比较高的计算值精度,那么就必须对修正系数的μ值进行变动,采用比该偶数区域的偶数样本的平均值μ略微大5%的μ值作修正系数。
因此,在1000亿——1500亿范围我们可以用μ=0.162作修正系数,对区域内偶数的素数对数量的下界进行计算:
G(100000000000) = 149091160;
inf( 100000000000 )≈ 148863296.6 , Δ≈-0.001528 ,infS( 100000000000 )= 111647472.43 , k(m)= 1.33333
G(100000000002) = 268556111;
inf( 100000000002 )≈ 268127817.0 , Δ≈-0.001595 ,infS( 100000000002 )= 111647472.43 , k(m)= 2.40156
G(100000000004) = 111836359;
inf( 100000000004 )≈ 111653826.5 , Δ≈-0.001632 ,infS( 100000000004 )= 111647472.43 , k(m)= 1.00006
G(100000000006) = 111843604;
inf( 100000000006 )≈ 111675773.4 , Δ≈-0.001501 ,infS( 100000000006 )= 111647472.43 , k(m)= 1.00025
G(100000000008) = 223655943;
inf( 100000000008 )≈ 223294944.9 , Δ≈-0.001614 ,infS( 100000000008 )= 111647472.43 , k(m)= 2
G(100000000010) = 150645060;
inf( 100000000010 )≈ 150414834.4 , Δ≈-0.001528,infS( 100000000010 )= 111647472.44 , k(m)= 1.34723
G(100000000012) = 128533939;
inf( 100000000012 )≈ 128330428.1 , Δ≈-0.001583,infS( 100000000012 )= 111647472.44 , k(m)= 1.14943
G(100000000014) = 238586864;
inf( 100000000014 )≈ 238209773.7 , Δ≈-0.001581,infS( 100000000014 )= 111647472.44 , k(m)= 2.13359
G(100000000016) = 134188011;
inf( 100000000016 )≈ 133976966.9 , Δ≈-0.001573,infS( 100000000016 )= 111647472.44 , k(m)= 1.2
G(100000000018) = 111942653;
inf( 100000000018 )≈ 111774488.9 , Δ≈-0.001502,infS( 100000000018 )= 111647472.45 , k(m)= 1.00114
G(100000000020) = 298192310;
inf( 100000000020 )≈ 297726593.2 , Δ≈-0.001562,infS( 100000000020 )= 111647472.45 , k(m)= 2.66667
G(100000000022) = 124402721;
inf( 100000000022 )≈ 124210930.6 , Δ≈-0.001542,infS( 100000000022 )= 111647472.45 , k(m)= 1.11253
Sp( 100000000000 ) = 1/(1+ .162 )*( 100000000000 /2 -2)*p(m) ≈ 148863296.6 , k(m)= 1.33333
Sp( 100000000002 ) = 1/(1+ .162 )*( 100000000002 /2 -2)*p(m) ≈ 268127817 , k(m)= 2.40156
Sp( 100000000004 ) = 1/(1+ .162 )*( 100000000004 /2 -2)*p(m) ≈ 111653826.5 , k(m)= 1.00006
Sp( 100000000006 ) = 1/(1+ .162 )*( 100000000006 /2 -2)*p(m) ≈ 111675773.4 , k(m)= 1.00025
Sp( 100000000008 ) = 1/(1+ .162 )*( 100000000008 /2 -2)*p(m) ≈ 223294944.9 , k(m)= 2
Sp( 100000000010 ) = 1/(1+ .162 )*( 100000000010 /2 -2)*p(m) ≈ 150414834.4 , k(m)= 1.34723
Sp( 100000000012 ) = 1/(1+ .162 )*( 100000000012 /2 -2)*p(m) ≈ 128330428.1 , k(m)= 1.14943
Sp( 100000000014 ) = 1/(1+ .162 )*( 100000000014 /2 -2)*p(m) ≈ 238209773.7 , k(m)= 2.13359
Sp( 100000000016 ) = 1/(1+ .162 )*( 100000000016 /2 -2)*p(m) ≈ 133976966.9 , k(m)= 1.2
Sp( 100000000018 ) = 1/(1+ .162 )*( 100000000018 /2 -2)*p(m) ≈ 111774488.9 , k(m)= 1.00114
Sp( 100000000020 ) = 1/(1+ .162 )*( 100000000020 /2 -2)*p(m) ≈ 297726593.2 , k(m)= 2.66667
Sp( 100000000022 ) = 1/(1+ .162 )*( 100000000022 /2 -2)*p(m) ≈ 124210930.6 , k(m)= 1.11253
G(110000000000) = 180801081;
inf( 110000000000 )≈ 180550355.5 , Δ≈-0.001387 ,infS( 110000000000 )= 121871489.95 ,
G(110000000002) = 122052830;
inf( 110000000002 )≈ 121871490 , Δ≈-0.001486 ,infS( 110000000002 )= 121871489.95 ,
G(110000000004) = 250274235;
inf( 110000000004 )≈ 249916814.3 , Δ≈-0.001428 ,infS( 110000000004 )= 121871489.95 ,
G(110000000006) = 133138114;
inf( 110000000006 )≈ 132950716.3 , Δ≈-0.001408 ,infS( 110000000006 )= 121871489.95 ,
G(110000000008) = 129058444;
inf( 110000000008 )≈ 128868117.6 , Δ≈-0.001475 ,infS( 110000000008 )= 121871489.96 ,
G(110000000010) = 325654239;
inf( 110000000010 )≈ 325204309 , Δ≈-0.001382 ,infS( 110000000010 )= 121871489.96 ,
计算式:
inf( 110000000000 ) = 1/(1+ .162 )*( 110000000000 /2 -2)*p(m) ≈ 180550355.5 ,
inf( 110000000002 ) = 1/(1+ .162 )*( 110000000002 /2 -2)*p(m) ≈ 121871490 ,
inf( 110000000004 ) = 1/(1+ .162 )*( 110000000004 /2 -2)*p(m) ≈ 249916814.3 ,
inf( 110000000006 ) = 1/(1+ .162 )*( 110000000006 /2 -2)*p(m) ≈ 132950716.3 ,
inf( 110000000008 ) = 1/(1+ .162 )*( 110000000008 /2 -2)*p(m) ≈ 128868117.6 ,
inf( 110000000010 ) = 1/(1+ .162 )*( 110000000010 /2 -2)*p(m) ≈ 325204309 ,
G(120000000000) = 352503092;
inf( 120000000000 )≈ 352131790.3 , Δ≈-0.001053 ,infS( 120000000000 )= 132049421.35 ,
G(120000000002) = 137230841;
inf( 120000000002 )≈ 137072275.3 , Δ≈-0.001155 ,infS( 120000000002 )= 132049421.35 ,
G(120000000004) = 132188594;
inf( 120000000004 )≈ 132049421.4 , Δ≈-0.001053 ,infS( 120000000004 )= 132049421.35 ,
G(120000000006) = 280130367;
inf( 120000000006 )≈ 279807448.7 , Δ≈-0.001153 ,infS( 120000000006 )= 132049421.35 ,
G(120000000008) = 158634730;
inf( 120000000008 )≈ 158459305.6 , Δ≈-0.001106 ,infS( 120000000008 )= 132049421.35 ,
G(120000000010) = 209105088;
inf( 120000000010 )≈ 208865513.7 , Δ≈-0.001146 ,infS( 120000000010 )= 132049421.36 ,
计算式:
inf( 120000000000 ) = 1/(1+ .162 )*( 120000000000 /2 -2)*p(m) ≈ 352131790.3 ,
inf( 120000000002 ) = 1/(1+ .162 )*( 120000000002 /2 -2)*p(m) ≈ 137072275.3 ,
inf( 120000000004 ) = 1/(1+ .162 )*( 120000000004 /2 -2)*p(m) ≈ 132049421.4 ,
inf( 120000000006 ) = 1/(1+ .162 )*( 120000000006 /2 -2)*p(m) ≈ 279807448.7 ,
inf( 120000000008 ) = 1/(1+ .162 )*( 120000000008 /2 -2)*p(m) ≈ 158459305.6 ,
inf( 120000000010 ) = 1/(1+ .162 )*( 120000000010 /2 -2)*p(m) ≈ 208865513.7 ,
G(130000000000) = 206957741;
inf( 130000000000 )≈ 206780555 , Δ≈-0.000856 ,infS( 130000000000 )= 142161631.58 ,
G(130000000002) = 291494087;
inf( 130000000002 )≈ 291257976.9 , Δ≈-0.000810 ,infS( 130000000002 )= 142161631.59 ,
G(130000000004) = 170724988;
inf( 130000000004 )≈ 170593957.9 , Δ≈-0.000767 ,infS( 130000000004 )= 142161631.59 ,
G(130000000006) = 142661257;
inf( 130000000006 )≈ 142542144.6 , Δ≈-0.000835 ,infS( 130000000006 )= 142161631.59 ,
G(130000000008) = 303509249;
inf( 130000000008 )≈ 303278147.4 , Δ≈-0.000761 ,infS( 130000000008 )= 142161631.59 ,
G(130000000010) = 189710906;
inf( 130000000010 )≈ 189562218 , Δ≈-0.000784 ,infS( 130000000010 )= 142161631.59 ,
计算式:
inf( 130000000000 ) = 1/(1+ .162 )*( 130000000000 /2 -2)*p(m) ≈ 206780555 ,
inf( 130000000002 ) = 1/(1+ .162 )*( 130000000002 /2 -2)*p(m) ≈ 291257976.9 ,
inf( 130000000004 ) = 1/(1+ .162 )*( 130000000004 /2 -2)*p(m) ≈ 170593957.9 ,
inf( 130000000006 ) = 1/(1+ .162 )*( 130000000006 /2 -2)*p(m) ≈ 142542144.6 ,
inf( 130000000008 ) = 1/(1+ .162 )*( 130000000008 /2 -2)*p(m) ≈ 303278147.4 ,
inf( 130000000010 ) = 1/(1+ .162 )*( 130000000010 /2 -2)*p(m) ≈ 189562218 ,
G(140000000000) = 243685341;
inf( 140000000000 )≈ 243569424.5 , Δ≈-0.0004757,infS( 140000000000 )= 152230890.33 ,
G(140000000002) = 155285474;
inf( 140000000002 )≈ 155215809.8 , Δ≈-0.0004486,infS( 140000000002 )= 152230890.33 ,
G(140000000004) = 313780435;
inf( 140000000004 )≈ 313627946.5 , Δ≈-0.0004860,infS( 140000000004 )= 152230890.33 ,
G(140000000006) = 172925643;
inf( 140000000006 )≈ 172843261.8 , Δ≈-0.0004764,infS( 140000000006 )= 152230890.34 ,
G(140000000008) = 174152737;
inf( 140000000008 )≈ 174063267.1 , Δ≈-0.0005137,infS( 140000000008 )= 152230890.34 ,
G(140000000010) = 443043007;
inf( 140000000010 )≈ 442853499.2 , Δ≈-0.0004277,infS( 140000000010 )= 152230890.34 ,
计算式:
inf( 140000000000 ) = 1/(1+ .162 )*( 140000000000 /2 -2)*p(m) ≈ 243569424.5 ,
inf( 140000000002 ) = 1/(1+ .162 )*( 140000000002 /2 -2)*p(m) ≈ 155215809.8 ,
inf( 140000000004 ) = 1/(1+ .162 )*( 140000000004 /2 -2)*p(m) ≈ 313627946.5 ,
inf( 140000000006 ) = 1/(1+ .162 )*( 140000000006 /2 -2)*p(m) ≈ 172843261.8 ,
inf( 140000000008 ) = 1/(1+ .162 )*( 140000000008 /2 -2)*p(m) ≈ 174063267.1 ,
inf( 140000000010 ) = 1/(1+ .162 )*( 140000000010 /2 -2)*p(m) ≈ 442853499.2 ,
G(150000000000) = 432693233;
inf( 150000000000 )≈ 432611673 , Δ≈-0.0001885,infS( m )= 162229377.38 , k(m)= 2.66667
G(150000000002) = 162281514;
inf( 150000000002 )≈ 162229377.4 , Δ≈-0.000321,infS( m )= 162229377.38 , k(m)= 1
G(150000000004) = 173090450;
inf( 150000000004 )≈ 173052270.7 , Δ≈-0.0002206,infS( m )= 162229377.38 , k(m)= 1.06671
G(150000000006) = 324533701;
inf( 150000000006 )≈ 324477220.4 , Δ≈-0.0001740,infS( m )= 162229377.39 , k(m)= 2.00011
G(150000000008) = 163640122;
inf( 150000000008 )≈ 163599942.2 , Δ≈-0.0002455,infS( m )= 162229377.39 , k(m)= 1.00845
G(150000000010) = 259646691;
inf( 150000000010 )≈ 259567003.8 , Δ≈-0.0003069,infS( m )= 162229377.39 , k(m)= 1.6
计算式:
inf( 150000000000 ) = 1/(1+ .162 )*( 150000000000 /2 -2)*p(m) ≈ 432611673 ,
inf( 150000000002 ) = 1/(1+ .162 )*( 150000000002 /2 -2)*p(m) ≈ 162229377.4 ,
inf( 150000000004 ) = 1/(1+ .162 )*( 150000000004 /2 -2)*p(m) ≈ 173052270.7 ,
inf( 150000000006 ) = 1/(1+ .162 )*( 150000000006 /2 -2)*p(m) ≈ 324477220.4 ,
inf( 150000000008 ) = 1/(1+ .162 )*( 150000000008 /2 -2)*p(m) ≈ 163599942.2 ,
inf( 150000000010 ) = 1/(1+ .162 )*( 150000000010 /2 -2)*p(m) ≈ 259567003.8 ,
G(160000000000) = 229574132;
inf( 160000000000 )≈ 229559235.1 , Δ≈-0.0000649,infS( 160000000000 )= 172169426.33 , k(m)=
G(160000000002) = 367315420;
inf( 160000000002 )≈ 367295743.5 , Δ≈-0.0000536,infS( 160000000002 )= 172169426.33 , k(m)=
G(160000000004) = 187842530;
inf( 160000000004 )≈ 187821192.4 , Δ≈-0.0001136,infS( 160000000004 )= 172169426.34 , k(m)=
G(160000000006) = 233415788;
inf( 160000000006 )≈ 233400374.2 , Δ≈-0.00006604,infS( 160000000006 )= 172169426.34 , k(m)=
G(160000000008) = 364844031;
inf( 160000000008 )≈ 364820136.6 , Δ≈-0.00006549,infS( 160000000008 )= 172169426.34 , k(m)=
G(160000000010) = 229594896;
inf( 160000000010 )≈ 229576603.6 , Δ≈-0.00007968,infS( 160000000010 )= 172169426.34 , k(m)=
计算式:
inf( 160000000000 ) = 1/(1+ .162 )*( 160000000000 /2 -2)*p(m) ≈ 229559235.1
inf( 160000000002 ) = 1/(1+ .162 )*( 160000000002 /2 -2)*p(m) ≈ 367295743.5
inf( 160000000004 ) = 1/(1+ .162 )*( 160000000004 /2 -2)*p(m) ≈ 187821192.4
inf( 160000000006 ) = 1/(1+ .162 )*( 160000000006 /2 -2)*p(m) ≈ 233400374.2
inf( 160000000008 ) = 1/(1+ .162 )*( 160000000008 /2 -2)*p(m) ≈ 364820136.6
inf( 160000000010 ) = 1/(1+ .162 )*( 160000000010 /2 -2)*p(m) ≈ 229576603.6
由于1600亿的样本计算值的相对误差太小了,不能保证临近有偶数的相对误差会出现正相对误差值,故在素数对下界计算中不能采用过小的相对误差值,即把1600亿排除在范围之外。
G(170000000000) = 258900543;
inf( 170000000000 )≈ 258966062.1 , Δ≈0.00025307 ,infS( m )= 182085512.38 , k(m)= 1.42222
G(170000000002) = 218461602;
inf( 170000000002 )≈ 218502614.9 , Δ≈0.00018774 ,infS( m )= 182085512.39 , k(m)= 1.2
G(170000000004) = 381425390;
inf( 170000000004 )≈ 381512502.2 , Δ≈0.00022839 ,infS( m )= 182085512.39 , k(m)= 2.09524
G(170000000006) = 185153680;
inf( 170000000006 )≈ 185181747.1 , Δ≈0.00015159 ,infS( m )= 182085512.39 , k(m)= 1.017
G(170000000008) = 188343060;
inf( 170000000008 )≈ 188364323.2 , Δ≈0.00011290 ,infS( m )= 182085512.39 , k(m)= 1.03448
G(170000000010) = 494981724;
inf( 170000000010 )≈ 495082177.5 , Δ≈0.00020249 ,infS( m )= 182085512.39 , k(m)= 2.71895
计算式:
inf( 170000000000 ) = 1/(1+ .162 )*( 170000000000 /2 -2)*p(m) ≈ 258966062.1
inf( 170000000002 ) = 1/(1+ .162 )*( 170000000002 /2 -2)*p(m) ≈ 218502614.9
inf( 170000000004 ) = 1/(1+ .162 )*( 170000000004 /2 -2)*p(m) ≈ 381512502.2
inf( 170000000006 ) = 1/(1+ .162 )*( 170000000006 /2 -2)*p(m) ≈ 185181747.1
inf( 170000000008 ) = 1/(1+ .162 )*( 170000000008 /2 -2)*p(m) ≈ 188364323.2
inf( 170000000010 ) = 1/(1+ .162 )*( 170000000010 /2 -2)*p(m) ≈ 495082177.5
很显然,μ=0.162已经不适用于1700亿区域的偶数的下界计算了。
我对计算式的计算精度,起码要达到80%以上,精度低于80%的计算式,好像已经对不起“计算”这名称了,不值得关注。至于计算精度低于50%的计算式,只能归之于“垃圾级”的计算式了。
|
|