Set \begin{align*}
OP: k1x-y=0\\
OQ:k2x-y=0\\
\Longrightarrow k1k2 \qquad are \qquad the \qquad two \qquad roots \qquad of\\
the \qquad following \qquad eqn.\\
(mx-2)^2&=2(x^2+1)\\
m^2x^2-2mnx+n^2-2x^2-2&=0\\
(m^2-2)x^2-2mnx+n^2-2&=0\\
\Longrightarrow k1k2&=\frac{ n^2-2 }{m^2-2}\\
\end{align*}
Point \(M(m,n)\) are on the ellipse
\begin{align*}
\Gamma: \frac{x^2}{6}+ \frac{y^2}{3}&=1\\
\Longrightarrow m^2+ 2n^2&=6\\
m^2&=6- 2n^2\\
\Longrightarrow k1k2 &=\frac{ n^2-2 }{m^2-2}\\
And
\begin{align*}
m&=un +v\\
\Longrightarrow \sqrt{1+u^2} \bullet \frac{ m \bullet m +2n^2 }{m \bullet u +2n} \\
&=\sqrt{1+u^2} \bullet \frac{m^2 +2n^2 }{m u +2n}\\
\end{align*}