|
\(12次才出现循环。这是13楼的题目, 6楼的公式还可以用吗?\)
\(\ a_{01}=\frac{\sqrt{3}}{2},b_{01}=\frac{1}{2},\)
\(\ a_{02}=\frac{\sqrt{3}}{2}a_{01}-\frac{1}{2}b_{01}=\frac{1}{2},\ \ b_{02}=\frac{1}{2}a_{01}+\frac{\sqrt{3}}{2}b_{01}=\frac{\sqrt{3}}{2}\)
\(\ a_{03}=\frac{\sqrt{3}}{2}a_{02}-\frac{1}{2}b_{02}=\frac{0}{2}, \ \ b_{03}=\frac{1}{2}a_{02}+\frac{\sqrt{3}}{2}b_{02}=\frac{2}{2}\)
\(\ a_{04}=\frac{\sqrt{3}}{2}a_{03}-\frac{1}{2}b_{03}=\frac{-1}{2}, b_{04}=\frac{1}{2}a_{03}+\frac{\sqrt{3}}{2}b_{03}=\frac{\sqrt{3}}{2}\)
\(\ a_{05}=\frac{\sqrt{3}}{2}a_{04}-\frac{1}{2}b_{04}=\frac{\sqrt{3}}{-2},b_{05}=\frac{1}{2}a_{04}+\frac{\sqrt{3}}{2}b_{04}=\frac{1}{2}\)
\(\ a_{06}=\frac{\sqrt{3}}{2}a_{05}-\frac{1}{2}b_{05}=\frac{-2}{2}, b_{06}=\frac{1}{2}a_{05}+\frac{\sqrt{3}}{2}b_{05}=\frac{0}{2}\)
\(\ a_{07}=\frac{\sqrt{3}}{2}a_{06}-\frac{1}{2}b_{06}=\frac{\sqrt{3}}{-2},b_{07}=\frac{1}{2}a_{06}+\frac{\sqrt{3}}{2}b_{06}=\frac{-1}{2}\)
\(\ a_{08}=\frac{\sqrt{3}}{2}a_{07}-\frac{1}{2}b_{07}=\frac{-1}{2}, b_{08}=\frac{1}{2}a_{07}+\frac{\sqrt{3}}{2}b_{07}=\frac{\sqrt{3}}{-2}\)
\(\ a_{09}=\frac{\sqrt{3}}{2}a_{08}-\frac{1}{2}b_{08}=\frac{0}{2}, \ \ b_{09}=\frac{1}{2}a_{08}+\frac{\sqrt{3}}{2}b_{08}=\frac{-2}{2}\)
\(\ a_{10}=\frac{\sqrt{3}}{2}a_{09}-\frac{1}{2}b_{09}=\frac{1}{2}, \ \ b_{10}=\frac{1}{2}a_{09}+\frac{\sqrt{3}}{2}b_{09}=\frac{\sqrt{3}}{-2}\)
\(\ a_{11}=\frac{\sqrt{3}}{2}a_{10}-\frac{1}{2}b_{10}=\frac{\sqrt{3}}{2},b_{11}=\frac{1}{2}a_{10}+\frac{\sqrt{3}}{2}b_{10}=\frac{-1}{2}\)
\(\ a_{12}=\frac{\sqrt{3}}{2}a_{11}-\frac{1}{2}b_{11}=\frac{2}{2}, \ \ b_{12}=\frac{1}{2}a_{11}+\frac{\sqrt{3}}{2}b_{11}=\frac{0}{2}\)
\(\ a_{13}=\frac{\sqrt{3}}{2}a_{12}-\frac{1}{2}b_{12}=\frac{\sqrt{3}}{2},b_{13}=\frac{1}{2}a_{12}+\frac{\sqrt{3}}{2}b_{12}=\frac{1}{2}\)
\(\ a_{14}=\frac{\sqrt{3}}{2}a_{13}-\frac{1}{2}b_{13}=\frac{1}{2}, \ \ b_{14}=\frac{1}{2}a_{13}+\frac{\sqrt{3}}{2}b_{13}=\frac{\sqrt{3}}{2}\) |
评分
-
查看全部评分
|