|
偶数的“1+1”是很容易的,非要扯上“1+2”,那就麻烦了,怎么得到“1+2”的数量呢?
说“1+1”是很容易的,是因为任意偶数2A,拆分成两个整数,必然可以表示为:2A=(A-x)+(A+x) ,
因此哥德巴赫猜想所要证明的“1+1”的存在问题,就是变量x与偶数半值A之间的什么对应关系时能够确保(A-x)、(A+x)都不能被√(2A)内的素数整除。
依据艾拉托尼筛法(Eratosthenes):x不能被≤√x 的所有素数整除即为素数的定义,偶数M拆分的【A-x,A+x】两个数只要满足不能被≤√M的全部素数整除,那么它们就成为素数对。由于1不是素数,因此更精确的说,偶数M拆分的【A-x,A+x】两个数只要满足不能被≤√(M-2)的全部素数整除即是素数对。
把偶数M拆分的两个数可以表示成A±x,≤√(M-2)的所有素数记为2、3、5、…、r;依据艾氏筛法,其中能够形成素数对的A±x有下面两种情况:
a:满足不能被≤√(M-2)的全部素数整除的素数对 A±x,这样的x值的数量记作 S1(m);
b:满足 A+x 不能被≤√(M-2)的所有素数为2、3、5、 …、r 整除,而 A-x 等于≤√(M-2)的某个奇素数。这样的x值的数量记作 S2(m)。
偶数M拆分为两个素数和的全部分法数,有 S(m)= S1(m)+ S2(m). {式1}
在式1中,我们主要要关注的是满足条件a 时变量x的取值,就是变量x与A在除以√(2A)内的全部素数时的余数的相互对应关系——不同余的关系。
由于自然数中数在除以任意一个素数的余数呈现周期性变化:
除以2时的余数变化:0、1、0、1、0、1、…;
除以3时的余数变化:0、1、2、0、1、2、…;
除以5时的余数变化:0、1、2、3、4、0、1、2、3、4、…;
……
除以r时的余数变化:0、1、2、…、r-2、r-1、0、…;
而对于任意一个偶数2A,其半值A除以√(2A-2)内的全部素数时的余数可以看作给定偶数2A的附有已知条件,我们记A除以≤√(M-2)的所有素数的余数为:j2、j3、j5、j7、…jr;
那么满足条件a的对应变量x的余数条件则为与A的余数不构成同余关系,即
除以2,余数不等于j2;
除以3,余数不等于j3与(3-j3);
除以5,余数不等于j5与(5-j5);
除以7,余数不等于j7与(7-j7);
……
由于在自然数列中,除以每个素数的周期性变化的余数中,筛除了与A的余数构成同余关系的余数后,必然有筛余的与A的余数不构成同余关系的其它余数。而变量x的取值区域正是一个自然数小区域[0,A-3] 。
在除以√(2A-2)内每个素数的余数时的不与A的余数构成同余关系的余数中,各取一个余数的各个组合,在n=π(r)的连续n个自然数列中具有唯一的最小解值,其中处于【0,A-3】范围的数x,则与A构成素对A±x。它们必然满足条件a —— 不能被≤√(M-2)的所有素数2、3、5、…、r 整除。
因此,每个大于5的偶数2A必然能够拆分成两个不能被≤√(M-2)的所有素数整除的素数:2A=(A-x)+(A+x) 。
实例举证:
例一,偶数10,半值A=5 ;A除以2的余数是1,那么变量x除以2的余数为0,在[0,A-3]范围内有0,2这2个可取值,代入到素对A±x中,则有10=5+5=3+7;
例二,偶数98的x的对应余数条件以及能够构成素对的变量x值
由偶数98的半值49除以2、3、5、7的余数条件49(j2=1,j3=1,j5=4,j7=0),
得出x的余数条件:x(y2=0, y3=0, y5≠1、4, y7≠0),
即x的余数条件:2(0)、3(0)、5(0,2,3)、7(1,2,3,4,5,6),
共有以下不同素数的余数组合18组及依据中国剩余定理的解值,它们散布于[0,209=2*3*5*7-1]区域:
(0,0,0,1)-120,(0,0,0,2)-30, (0,0.0,3)-150,(0,0,0,4)-60, (0,0,0,5)-180,(0,0,0,6)-90;
(0,0,2,1)-162,(0,0,2,2)-72, (0,0,2,3)-192,(0,0,2,4)-102, (0,0,2,5)-12, (0,0,2,6)-132;
(0,0,3,1)-78, (0,0,3,2)-198, (0,0,3,3)-108,(0,0,3,4)-18, (0,0,3,5)-138,(0,0,3,6)-48;
其中处于x值取值区域[0,46]内的x值有:30,12,18,
因此偶数98可拆分的素对有49±30,49±12,49±18 。
例三,偶数100的变量x的对应余数条件以及解值
由偶数100的半值50除以2、3、5、7的余数条件50(j2=0,j3=2,j5=0,j7=1),
得出x的余数条件:x(y2=1,y3=0,y5≠0,y7≠1与6),
即x的余数条件:2(1)、3(0)、5(1,2,3,4)、7(0,2,3,4,5),
它们在除以素数(2、3、5、7)时有以下不同余数的20种组合:
(1,0,1,0),(1,0,1,2),(1,0,1,3),(1,0,1,4),(1,0,1,5);
(1,0,2,0),(1,0,2,2),(1,0,2,3),(1,0,2,4),(1,0,2,5);
(1,0,3,0),(1,0,3,2),(1,0,3,3),(1,0,3,4),(1,0,3,5);
(1,0,4,0),(1,0,4,2),(1,0,4,3),(1,0,4,4),(1,0,4,5);
运用中国剩余定理,每组不同的余数条件组合在素数连乘积内(此题即2×3×5×7=210 个连续自然数中)对应于一个唯一的整数,有
(1,0,1,0)=21, (1,0,1,2)=51, (1,0,1,3)=171,(1,0,1,4)=81, (1,0,1,5)=201;
(1,0,2,0)=147,(1,0,2,2)=177,(1,0,2,3)=87, (1,0,2,4)=207,(1,0,2,5)=117;
(1,0,3,0)=63, (1,0,3,2)=93, (1,0,3,3)=3, (1,0,3,4)=113,(1,0,3,5)=33;
(1,0,4,0)=189,(1,0,4,2)=9, (1,0,4,3)=129,(1,0,4,4)=39, (1,0,4,5)=159;
其中处于x值取值区域[0,47]内的x值有:21,9,3,33,39,
于是有:
A= 50 ,x= : 3 , 9 , 21 , 33 , 39 ,( 47 ——符合条件b),
代人A±x,得到符合条件a的全部素对:
[ 100 = ] 47 + 53,41 + 59,29 + 71,17 + 83,11 + 89,(3 + 97 )
M= 100 S(m)= 6 S1(m)= 5 Sp(m)≈ 4.571 δ1(m)≈-.086 K(m)= 1.33 r= 7
* Sp( 100)=[( 100/2- 2)/2]*( 1/ 3)*( 4/ 5)*( 5/ 7)= 4.571
变量x的数量的计算示例:
例:偶数908,其√(908-2)内的最大素数是29,半值A= 454,其分成两个素数对A±x的变量x的取值区间[0,A-3]中含有的整数为( 908/2- 2)个,
因此,其构成素对的x值的计算式是:
Sp( 908)=[( 908/2- 2)/2]*( 1/ 3)*( 3/ 5)*( 5/ 7)*( 9/ 11)*( 11/ 13)*( 15/ 17)*( 17/ 19)*( 21/ 23)*( 27/ 29)= 15
具体到每一步因子的含义:
1/2——[0,A-3]中满足除以2的余数不等于j2的数的发生概率;
( 1/ 3)—— [0,A-3]中满足除以3的余数不等于j3与(3-j3)的数的发生概率;
( 3/ 5)—— [0,A-3]中满足除以5的余数不等于j5与(5-j5)的数的发生概率;
( 5/ 7)—— [0,A-3]中满足除以7的余数不等于j7与(7-j7)的数的发生概率;
……
这里的j2,j3,…,jn,…,jr系偶数半值A除以素数2,3,…,n,…,r时的余数。
因此依据概率的独立事件的乘法定理:
在自然数[0,A-3]区域中除以素数2,3,…,n,…,r时余数同时满足不等于j2、j3及(3-j3)、j5及(5-j5)、…、jr及(r-jr)的x值的分布概率P(m),
有P(m)=P(2·3·5·…·n·…·r))
=P(2)P(3)…P(n)…P(r).
即有
Sp( 908)=( 908/2- 2)*P(m)=[( 908/2- 2)/2]*( 1/ 3)*( 3/ 5)*( 5/ 7)*( 9/ 11)*( 11/ 13)*( 15/ 17)*( 17/ 19)*( 21/ 23)*( 27/ 29)= 15
实际筛选后的情况 :A= 454 时,
变量x= : 33 , 45 , 87 , 117 , 123 , 147 , 177 , 255 , 273 , 297 , 303 , 315 , 357 , 375 , 423 ,
表示成素数对2A={A-x,+,A+x}的形式:
[ 908 = ] 421 + 487 409 + 499 367 + 541 337 + 571 331 + 577 307 + 601 277 + 631 199 + 709 181 + 727 157 + 751 151 + 757 139 + 769 97 + 811 79 + 829 31 + 877
M= 908 S(m)= 15 S1(m)= 15 Sp(m)≈ 15 δ(m)≈ 0 K(m)= 1 r= 29
任意大的偶数2A的不与A构成同余关系的变量x是必然存在的,这是自然数中数除以任意一个素数的余数呈现周期性变化的规律所决定的。而构成根号内的素对的条件b的变量x的数量,无关乎哥德巴赫猜想的证明,实际上也有许多偶数是没有构成根号内的素对的条件b的,其此变量x的数量S2=0,如例子中的98、908,等等。
何必去研究那“垃圾级别的1+2呢”??? |
|