数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 2747|回复: 20

(\(n\to\infty\)时\(a_n=a\))是对\(\displaystyle\lim_{n\to\infty}a_n=a\)的篡改

[复制链接]
发表于 2024-5-12 01:34 | 显示全部楼层 |阅读模式
因为一般来说不存在正整数\(n\)使\(a_k=\displaystyle\lim_{m\to\infty}a_m\)
即 \(\displaystyle_{m\to\infty}a_m\in\{a_n\mid n\in\mathbb{N}^+\}\) 一般不成立,
所以一般没有 \(a_n=a\) 的时候,\(n\to\infty\)时的唯一合理的解读是
\(n\in\displaystyle\bigcap_{k=1}^\infty\{m\in\mathbb{N}:m>k\}\). 但后者是空集。
发表于 2024-5-12 06:50 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-5-12 07:46 编辑


       elim成篇累牍的发表帖子说【n < s(n) = n+1 是皮亚诺公理的简单推论,老头楞说无穷大是自然数,那么就有∞<∞+1。∞=∞+1 是无穷大的本质,这就导致矛盾。所以没有无穷大自然数。也就没有自然数n使得\(\tfrac{1}{n}=0\)】
       elim的这段胡说八道看似有理实则大谬:
       1、elim的推论式n<s(n)=n+1是从何推出来的?皮亚诺公理第二条
『每一个确定的自然数a都有一个确定的后继数a',且a'也是自然数』。这里的“确定”有两层意思:①具体写出;②逻辑认定。即使elim推论式中的n是逻辑认定的自然数,也只能推出“一个确定的后继n+1”;请问elim先生,你推论式中的n<s(n)=n+1是什么意思?若s(n)放在这里是想表示有很多的n都等于n+1吗?这可与自然n的后继n+1的唯一性矛盾嘛!所以你的这个推论式有故意把水搅浑,趁浑水摸鱼之嫌!
       2、在现行的《数学分析》中∞是大于某一无论怎样大的正数\(N_ε\)的数的全体,因此∞是一个集合。这一点我们可从威尔斯特拉斯极限定义和菲赫金哥尔茨关于无穷大定义得到证明。你门生认为【第一个定义的是无穷大量,而不是∞,无穷大量本质上是函数,不是集合;第二个是在描述n→∞,而不是单独描述∞】我想请问“现代数学”的创始人,无穷大量和∞有什么区别?无穷大量的本质是函数,那么这个函数的定义域是一个数还是一个集合?无论描述n→∞,还是单独描述∞,那不都说明∞不只是单独的一个数,而是多个数的集体(集合)!
       3、春风晚霞不管你们“现代数学”派怎样辱骂始终坚持认为∞是集合,只有在集合的意义下才能合理解释《夜柔吠陀》一书中所记述的“从无限中添加或移去一部分结果仍是无限”,也就是∞±A=∞。也只有在集合的意义下才能合理的解希尔伯特的无穷宾馆命题的合理性!
       4、elim的【老头楞说无穷大是自然数,那么就有∞<∞+1。∞=∞+1 是无穷大的本质,这就导致矛盾。】这段胡扯有以下两处严重失实:
       ①、【老头楞说无穷大是自然数】,这是对春风晚霞的栽脏!春风晚霞历来坚持无穷大是自然数集的真子集(理论依据再次请你参见菲赫全哥尔茨《微积分学教程》四卷八册版笫一卷,第一分册P37页;及其《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义:若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|x_n|>\(N_E\),则称变量\(x_n\)为无穷大。)
       ②、∞<∞+1这个矛盾是elim始终不把∞看作集合,而看作是一个确定的自然数造成的。若把∞看作(其实本身就是)集合,就只有∞=∞+1这永真表达式了。
       elim大教主,你也够辛苦了。为反对春氏可达,你几乎篡改了所有现行数学的基础知识。与其这样劳而无功,你何不把我所有论述和你的所有辩驳写成诉状,递交法庭申请仲裁?春风晚霞随时准备参与应诉!elim教主,你觉得你的胜算有多大?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-22 14:21 | 显示全部楼层
如果\(H_{\infty}\ne\varnothing\), 则有自然数\(m\in H_{\infty}=\displaystyle\bigcap_{n=1}^\infty A_n\subset A_m\) ,
只有孬种的才认为\(m\in A_m\). 所以\(H_{\infty}\ne\varnothing\)只能是孬种犯的孬。
回复 支持 反对

使用道具 举报

发表于 2024-6-23 05:26 | 显示全部楼层
elim 发表于 2024-6-22 14:21
如果\(H_{\infty}\ne\varnothing\), 则有自然数\(m\in H_{\infty}=\displaystyle\bigcap_{n=1}^\infty A_n\ ...


elin认为【如果\(H_∞≠\phi\) 则有自然\(m∈H_∞=\displaystyle\bigcap_{n=1}^∞ A_n\subset A_m\)
只有孬种的才认为\(m∈A_m\). 所以\(H_∞≠\phi\)只能是孬种犯的孬。】elim至今也没有明白他的【无穷交就是一种“臭便”】臭在哪里?事实上因为\(H_∞=\displaystyle\lim_{k→∞}\{k+1,k+2,…\}≠\phi\) ,若有自然数\(m∈H_∞=\displaystyle\bigcap_{n=1}^∞ A_n\),则必有\(H_∞\color{red}{\supset A_m}\)。(\(\color{red}{这时A_m是H_∞的真子集}\))所以m∈\(H_∞\),但\(m\notin A_m\)。elim自许自己精通集合论,为什么连子母集的关系都弄不清呢?同样是m∈\(H_∞\)但\(m\notin A_m\),为什么elim会演译岀\(H_∞=\phi\)呢?elim自己给出了很好的诠释,那就是【只有孬种的才认为\(m∈A_m\). 所以\(H_∞=\phi\)只能是孬种犯的孬。】
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-23 07:56 | 显示全部楼层
如果\(N_{\infty}\ne\varnothing\), 则有自然数\(m\in N_{\infty}=\displaystyle\bigcap_{n=1}^\infty A_n\subset A_m\) ,
\(m\in A_m\) 显然不成立. 孬种的 \(N_{\infty}\ne\varnothing\)就此破产。
回复 支持 反对

使用道具 举报

发表于 2024-6-23 08:43 | 显示全部楼层
elim 发表于 2024-6-23 07:56
如果\(N_{\infty}\ne\varnothing\), 则有自然数\(m\in N_{\infty}=\displaystyle\bigcap_{n=1}^\infty A_n\ ...


根据你给出的单减集合列通项公式,谁也不会怀疑\(\forall k∈N但k\notin A_k\),e大掌门人你能因此“证明”\(N=\phi\)吗?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-23 08:56 | 显示全部楼层
如果\(N_{\infty}\ne\varnothing\), 则存在自然数\(m\in N_{\infty}=\displaystyle\bigcap_{n=1}^\infty A_n\subset A_m\) ,
但 \(m\in A_m\) 显然不成立. 孬种的 \(N_{\infty}\ne\varnothing\)就此破产。
回复 支持 反对

使用道具 举报

发表于 2024-6-23 12:21 | 显示全部楼层
elim 发表于 2024-6-23 08:56
如果\(N_{\infty}\ne\varnothing\), 则存在自然数\(m\in N_{\infty}=\displaystyle\bigcap_{n=1}^\infty A_ ...


根据你elim给出的单减集合列通项公式,我们有\(A_1=\{2,3,4,5,…\}\),所以根据elim的“臭便”思想,\(\forall j∈\(A_1\)都有j\(\notin A_j\),所以\(A_1=\phi\);根据\(\forall k∈N恒有k\notin A_k\),\(N=\phi\)!由于\(A_1\)都不是空集,这说明\(\forall m∈H_∞,m\notin A_m\),与\(H_∞=\phi\)间汲有必然联系!所以你的【\(\forall m∈H_∞,m\notin A_m\),所以\(H_∞=\phi\)】纯属扯淡!elim不管你是好种还是孬种,纯种还是杂种,数学中都没有戈陪尔效应,谎言千遍仍是谎言!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-23 13:04 | 显示全部楼层
孬种的 \(N_{|infty}\ne\varnothing\) 谎言直接导致 \(m\in A_m\)的谬论。
回复 支持 反对

使用道具 举报

发表于 2024-6-23 14:12 | 显示全部楼层
elim 发表于 2024-6-23 13:04
孬种的 \(N_{|infty}\ne\varnothing\) 谎言直接导致 \(m\in A_m\)的谬论。

请孬种elim\(\color{red}{严格论证}\)为什么【\( N_∞≠\phi\)】会【直接导致 \(m∈A_m\)的谬论】?若给不出严格的证明,只能说明你是十足的孬种!!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-14 06:02 , Processed in 0.081488 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表