[quote]cgl_74 发表于 2024-8-17 16:49
你这个题目有啥背景或讲究吗?
计算并不困难。因为最大值所在图形肯定是个漂亮图形。我不知道什么叫"背景", 谁的图形大谁就是正确答案!
已知三边形一内角为60度, 周长为3, 三边形面积最大值=0.4330127。
已知四边形一内角为60度, 周长为4, 四边形面积最大值=0.9413205。
已知五边形一内角为60度, 周长为5, 五边形面积最大值=1.5464739。
已知六边形一内角为60度, 周长为6, 六边形面积最大值=2.2737641。
已知七边形一内角为60度, 周长为7, 七边形面积最大值=3.1282941。
已知八边形一内角为60度, 周长为8, 八边形面积最大值=4.1117736。
已知九边形一内角为60度, 周长为9, 九边形面积最大值=5.2249376。
......
0.4330127, 0.9413205, 1.5464739, 2.2737641, 3.1282941, 4.1117736, 5.2249376, 6.4681547, 7.8416298, 9.3454862, 10.979802, 12.744630, 14.640007, 16.665958, 18.822502, 21.109654}
四舍五入后得到这样一串数。
0, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 19, 21, 24, 26, 29, 32, 35, 38, 41, 44, 48, 51, 55, 59, 63, 67, 71, 75, 80, 85, 89, 94, 99, 104, 110, 115,
121, 126, 132, 138, 144, 150, 157, 163, 170, 177, 183, 190, 198, 205, 212, 220, 227, 235, 243, 251, 259, 268, 276, 285, 293, 302, 311, 320,
329, 339, 348, 358, 367, 377, 387, 397, 408, 418, 429, 439, 450, 461, 472, 483, 494, 506, 517, 529, 541, 553, 565, 577, 590, 602, 615, 627,
640, 653, 666, 680, 693, 707, 720, 734, 748, 762, 776, 790, 805, 820, 834, 849, 864, 879, 894, 910, 925, 941, 957, 972, 988, 1005, 1021, ...}
- Table[(n + 1)^2 Cos[2 Pi/(3 n)]/(4 (n - 1) Sin[2 Pi/(3 n)] + 8 Sin[(n + 2) Pi/(3 n)]), {n, 2, 22}]
复制代码
{Sqrt[3]/4,
(16 Cos[(2 \[Pi])/9])/(8 Cos[\[Pi]/18] + 8 Sin[(2 \[Pi])/9]),
(25 Sqrt[3])/28,
(36 Cos[(2 \[Pi])/15])/(8 Cos[\[Pi]/30] + 16 Sin[(2 \[Pi])/15]),
(49 Cos[\[Pi]/9])/(8 Cos[\[Pi]/18] + 20 Sin[\[Pi]/9]),
(64 Cos[(2 \[Pi])/21])/(8 Cos[\[Pi]/14] + 24 Sin[(2 \[Pi])/21]),
(81 (1 + Sqrt[3]))/(2 Sqrt[2] (7 Sqrt[2] (-1 + Sqrt[3]) + 2 Sqrt[2] (1 + Sqrt[3]))),
(100 Cos[(2 \[Pi])/27])/(8 Cos[(5 \[Pi])/54] + 32 Sin[(2 \[Pi])/27]),
(121 Cos[\[Pi]/15])/(8 Sqrt[5/8 + Sqrt[5]/8] + 36 Sin[\[Pi]/15]),
(144 Cos[(2 \[Pi])/33])/(8 Cos[(7 \[Pi])/66] + 40 Sin[(2 \[Pi])/33]),
(169 Cos[\[Pi]/18])/(8 Cos[\[Pi]/9] + 44 Sin[\[Pi]/18]),
(196 Cos[(2 \[Pi])/39])/(8 Cos[(3 \[Pi])/26] + 48 Sin[(2 \[Pi])/39]),
(225 Cos[\[Pi]/21])/(8 Cos[(5 \[Pi])/42] + 52 Sin[\[Pi]/21]),
(256 Cos[(2 \[Pi])/45])/(8 Cos[(11 \[Pi])/90] + 56 Sin[(2 \[Pi])/45]),
(289 Cos[\[Pi]/24])/(8 Cos[\[Pi]/8] + 60 Sin[\[Pi]/24]),
(324 Cos[(2 \[Pi])/51])/(8 Cos[(13 \[Pi])/102] + 64 Sin[(2 \[Pi])/51]),
(361 Cos[\[Pi]/27])/(8 Cos[(7 \[Pi])/54] + 68 Sin[\[Pi]/27]),
(400 Cos[(2 \[Pi])/57])/(8 Cos[(5 \[Pi])/38] + 72 Sin[(2 \[Pi])/57]),
(441 Cos[\[Pi]/30])/(8 Cos[(2 \[Pi])/15] + 76 Sin[\[Pi]/30]),
(484 Cos[(2 \[Pi])/63])/(8 Cos[(17 \[Pi])/126] + 80 Sin[(2 \[Pi])/63]),
(529 Cos[\[Pi]/33])/(8 Cos[(3 \[Pi])/22] + 84 Sin[\[Pi]/33])} |