数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\textbf{谬论}A_k\supset A_{k+1}\implies\bigcap_n A_n\ne\phi\)

[复制链接]
发表于 2024-8-13 09:57 | 显示全部楼层
对elim所给集列\(\{A_n:=\{m∈N:m>n\}\}\).求证\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}≠\phi\)及\(N_∞=\displaystyle\lim_{n \to \infty} A_n≠\phi\)。
       【证明:】\(\because\quad A_n:=\{m∈N:m>n\}\)(己知);
\(\therefore\quad A_n\supset A_{n+1}\):
\(\therefore\quad\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}\)。由皮亚诺公理(Peano axioms)第2条“每一个确定的自然数a都有一个确定的后继数a',a'也是自然数”知:\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}\)中的\(\{n+1,n+2,…\}\)都是逻辑确定的自然数,故此\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}≠\phi\)。
从而\(N_∞=\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}≠\phi\)!
【请elim诠释该证明中哪步错了,为什么错了?是Cantor集合论太孬、‌皮亚诺公理(Peano axioms)太孬,周民强的《实变函数论》太孬?还是你思路太野、太杂?elim先生,你太抬举我了。为反春氏可达,你几乎篡改了现行数学的全部基础知识。这岂不是从另一侧面证明了在现行数学框架下,春氏可达是成立的吗?】

点评

大家看了周民强《实变函数解题指南》8页例7解法,都明白老狗婊子的“推导”只不过是些淫声浪叫。老狗婊子做不出《实变函数论》5页例2、《集合论》35页习题4和6,只配在这里天天挨骂!  发表于 2024-8-13 10:14
还她妈在问“哪步错了”!大家都能一眼看到第5行的头腚颠倒法,也都知道皮亚诺公理与求极限集没有直接联系,需要按照极限集定义推导,还她妈问什么问?找骂的贱货!  发表于 2024-8-13 10:04
回复 支持 反对

使用道具 举报

发表于 2024-8-13 20:10 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-8-13 20:25 编辑


       elim,你觉得你的辩解对吗?你的【\(\quad\because\forall m\exists N=m\)\(\forall n>N(m\notin\{n+1,n+2,…\}\))
\(\quad\therefore\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}=\phi\)】中\(\because\)的因为又是什么呢?其实这个\(\because\)的因为就是你臭名昭著的【无穷交就是一种骤变】的思想方法。elim故意装疯卖傻,你明知\(\quad\because\forall m\exists N=m\)\(\forall n>N(m\notin A_n\)),但确有无穷多个大于n的自然数(n+1),(n+2),……属于\(A_n\),\(\quad\therefore\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}≠\phi\).
       elim你认为【简单说来,随着n的无限制增大,属于\(\{n+1,n+2,…\}\) 的自然数的门槛也无限增高,以至于任何给定的自然数都不能属于\(N_∞=\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}\)。】
       根据e大教主的这番解释,看来elim是认为皮亚诺公理(Peano axioms)太孬了呀!因为\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}\)的那个趋向于∞(即\(\{n\to\infty\}\))的n可是由\(\displaystyle\bigcap_{n=1}^∞ A_n\)唯一确定的嘛!如果它不存在,那么它的前趋也不存在,它前趋的前趋也不存在,如此下去连4、3、2、1这些常见的自然数也就不存在!e大教主,你说有这种可能吗?
       elim认为【蠢疯是资深集论白痴, 错就错在它生来种就贼孬。不过它要是戒吃狗屎,端正学风,痛改前非,或许能活着理解\(N_∞=\phi\) 别寄太大希望。】e大教主,如果你心术正的话,也许你还算得上“资深集论花痴”,不过你心术不正。明知错误也要狡辩,明知学术交流应说理为佳,你偏偏采取辱骂打压想压服对手。特别是我住院期间,你伙同你的队友,加倍向我发动进攻。是不是有点心狠手黑之嫌!
回复 支持 反对

使用道具 举报

发表于 2024-8-15 02:54 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-8-15 03:01 编辑
elim 发表于 2024-8-13 21:06
因为蠢疯不知道它的种有多孬,所以它不知道为啥求不出集合交:
\(\because\;\;m\not\in \displaystyle\big ...



一、再证\(\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\)。
【证明:】根据elim所给单调递减集列的定义式\(A_n:={m∈N:m>n}\)得:\(A_1=\{2,3,4,……\}\);\(A_2=\{3,4,5……\}\),……\(A_k=\{k+1,k+2,k+3,……\}\),
……,易知\(A_k\supset A_{k+1}\),\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}\);所以:\(\displaystyle\bigcap_{n=1}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)\(\displaystyle\bigcap_{n=2}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)……\(\displaystyle\bigcap_{n=k}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)…………\(\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)\(\displaystyle\bigcap_{n={∞-1}}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}=\)\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\).
小结:elim在论证\(N_∞=\phi\)的过程中,①、只注意到\(\forall m∈\mathbb{N},m\notin A_m\),确实无视众多大于m的自然数属于\(A_m\);②、始终无视皮亚诺公理(Peano axioms)第二条,坚持认为自然数是有限数。不承认\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\).从而导致\(\displaystyle\lim_{n \to \infty} n\)无前趋,从而异致\(A_{∞-1}=\phi\)……直至\(A_1=\phi\)。③、elim在论证\(N_∞=\phi\)过程中始终不敢用集合交的定义和求交运算的运运算规律。甚至他自己的定义都不用。
二、对elim副帖的剖析
        elim为说明【主贴不是辩解而是向网友揭示蠢氏非空的错误】,并强调说【本贴首行给出了第二行的无可反驳的简捷证明】,现把这个无可反驳的简捷证明复制于后【\(\because\quad m\notin(\displaystyle\bigcap_{n<m} A_n\))\(\bigcap A_m\bigcap(\displaystyle\bigcap_{n>m}A_n)=\)\(N_∞(\forall m∈\mathbb{N})\)
\(\quad\therefore N_∞=\phi\)】
       elim这个副帖并无什么新意,从一可知,虽然\(\because\quad m\notin(\displaystyle\bigcap_{n<m} A_n\))\(\bigcap A_m\bigcap(\displaystyle\bigcap_{n>m}A_n)=\)\(N_∞(\forall m∈\mathbb{N})\)中的\(\because\)成立,但笫二行的\(\therefore\)仍不成立。原因是因为中的m取自\(A_n^c\),它固然不属于\(N_∞ =\displaystyle\lim_{n \to \infty} A_n\)。这也是你和你的婊子门生,坚决反对用周民强《实变函数论》P9定义1.8证明 \(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}≠\phi\)的主要原因。就连你自己都知道你那个【无穷交就是一种骤变】是错误的!
不管我这个【死磕周民强的集论白痴】看不看得懂你的这个副帖,你都无法改变你若遵从『从命题的题设出发,根据已知的定义,公理、定理逐步推导出命题结论』论证范式,你是证明不到\(N_∞=\phi\)的!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-8-15 03:28 | 显示全部楼层
\(\because\small\;\;m\not\in \displaystyle\bigg(\bigcap_{n< m} A_n\bigg) \cap A_m\cap\bigg(\bigcap_{n> m}A_n\bigg)=N_{\infty}\,(\forall m\in\mathbb{N}).\)
\(\therefore\small\;\; N_{\infty}=\varnothing\)

本贴第一行是第二行的无可辩驳的简捷证明。因此\(N_{\infty}=\varnothing\)
是只有孬种才否认的简单事实。从来孬种生来就蠢。应该放弃
与之争论,让网友充分了解其种有多孬就够了。
蠢疯孬种的劣根性表现为
帖子又臭又长, 行文丑陋不堪, 计算三步两错, 概念一坛糟糠,
逻辑悖谬颠倒, 结论无谱没脑. 扯谎滚屁滔滔, 读来当即称孬

欢迎蠢疯自蛋自捣显摆痴呆的帖子,多多益善.
回复 支持 反对

使用道具 举报

发表于 2024-8-15 03:57 | 显示全部楼层
elim 发表于 2024-8-15 03:28
\(\because\small\;\;m\not\in \displaystyle\bigg(\bigcap_{n< m} A_n\bigg) \cap A_m\cap\bigg(\bigcap_{ ...


一、再证\(\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\)。
【证明:】根据elim所给单调递减集列的定义式\(A_n:={m∈N:m>n}\)得:\(A_1=\{2,3,4,……\}\);\(A_2=\{3,4,5……\}\),……\(A_k=\{k+1,k+2,k+3,……\}\),
……,易知\(A_k\supset A_{k+1}\),\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}\);所以:\(\displaystyle\bigcap_{n=1}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)\(\displaystyle\bigcap_{n=2}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)……\(\displaystyle\bigcap_{n=k}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)…………\(\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)\(\displaystyle\bigcap_{n={∞-1}}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}=\)\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\).
小结:elim在论证\(N_∞=\phi\)的过程中,①、只注意到\(\forall m∈\mathbb{N},m\notin A_m\),确实无视众多大于m的自然数属于\(A_m\);②、始终无视&#8204;皮亚诺公理(Peano axioms)第二条,坚持认为自然数是有限数。不承认\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\).从而导致\(\displaystyle\lim_{n \to \infty} n\)无前趋,从而异致\(A_{∞-1}=\phi\)……直至\(A_1=\phi\)。③、elim在论证\(N_∞=\phi\)过程中始终不敢用集合交的定义和求交运算的运运算规律。甚至他自己的定义都不用。
二、对elim副帖的剖析
        elim为说明【主贴不是辩解而是向网友揭示蠢氏非空的错误】,并强调说【本贴首行给出了第二行的无可反驳的简捷证明】,现把这个无可反驳的简捷证明复制于后【\(\because\quad m\notin(\displaystyle\bigcap_{n<m} A_n\))\(\bigcap A_m\bigcap(\displaystyle\bigcap_{n>m}A_n)=\)\(N_∞(\forall m∈\mathbb{N})\)
\(\quad\therefore N_∞=\phi\)】
       elim这个副帖并无什么新意,从一可知,虽然\(\because\quad m\notin(\displaystyle\bigcap_{n<m} A_n\))\(\bigcap A_m\bigcap(\displaystyle\bigcap_{n>m}A_n)=\)\(N_∞(\forall m∈\mathbb{N})\)中的\(\because\)成立,但笫二行的\ (\therefore\)仍不成立。原因是因为中的m与取自\(A_n^c\)它固然不属于\(N_∞ =\displaystyle\lim_{n \to \infty} A_n\)。这也是你和你的婊子门生,坚决反对用周民强《实变函数论》P9定义1.8证明 \(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}≠\phi\)的主要原因。就连你自己都知道你那个【无穷交就是一种骤变】是错误的!
不管我这个【死磕周民强的集论白痴】看不看得懂你的这个副帖,你都无法改变你若遵从『从命题的题设出发,根据已知的定义,公理、定理逐步推导出命题结论』论证范式,你是证明不到\(N_∞=\phi\)的!
回复 支持 反对

使用道具 举报

发表于 2024-8-15 06:53 | 显示全部楼层
elim 发表于 2024-8-15 06:43
\(\because\small\;\;m\not\in\displaystyle\bigg(\bigcap_{n< m} A_n\bigg) \cap A_m\cap\bigg(\bigcap_{n ...


一、再证\(\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\)。
【证明:】根据elim所给单调递减集列的定义式\(A_n:={m∈N:m>n}\)得:\(A_1=\{2,3,4,……\}\);\(A_2=\{3,4,5……\}\),……\(A_k=\{k+1,k+2,k+3,……\}\),
……,易知\(A_k\supset A_{k+1}\),\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}\);所以:\(\displaystyle\bigcap_{n=1}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)\(\displaystyle\bigcap_{n=2}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)……\(\displaystyle\bigcap_{n=k}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)…………\(\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)\(\displaystyle\bigcap_{n={∞-1}}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}=\)\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\).
小结:elim在论证\(N_∞=\phi\)的过程中,①、只注意到\(\forall m∈\mathbb{N},m\notin A_m\),确实无视众多大于m的自然数属于\(A_m\);②、始终无视&#8204;皮亚诺公理(Peano axioms)第二条,坚持认为自然数是有限数。不承认\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\).从而导致\(\displaystyle\lim_{n \to \infty} n\)无前趋,从而异致\(A_{∞-1}=\phi\)……直至\(A_1=\phi\)。③、elim在论证\(N_∞=\phi\)过程中始终不敢用集合交的定义和求交运算的运运算规律。甚至他自己的定义都不用。
二、对elim副帖的剖析
        elim为说明【主贴不是辩解而是向网友揭示蠢氏非空的错误】,并强调说【本贴首行给出了第二行的无可反驳的简捷证明】,现把这个无可反驳的简捷证明复制于后【\(\because\quad m\notin(\displaystyle\bigcap_{n<m} A_n\))\(\bigcap A_m\bigcap(\displaystyle\bigcap_{n>m}A_n)=\)\(N_∞(\forall m∈\mathbb{N})\)
\(\quad\therefore N_∞=\phi\)】
       elim这个副帖并无什么新意,从一可知,虽然\(\because\quad m\notin(\displaystyle\bigcap_{n<m} A_n\))\(\bigcap A_m\bigcap(\displaystyle\bigcap_{n>m}A_n)=\)\(N_∞(\forall m∈\mathbb{N})\)中的\(\because\)成立,但笫二行的\ (\therefore\)仍不成立。原因是因为中的m与取自\(A_n^c\)它固然不属于\(N_∞ =\displaystyle\lim_{n \to \infty} A_n\)。这也是你和你的婊子门生,坚决反对用周民强《实变函数论》P9定义1.8证明 \(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}≠\phi\)的主要原因。就连你自己都知道你那个【无穷交就是一种骤变】是错误的!
不管我这个【死磕周民强的集论白痴】看不看得懂你的这个副帖,你都无法改变你若遵从『从命题的题设出发,根据已知的定义,公理、定理逐步推导出命题结论』论证范式,你是证明不到\(N_∞=\phi\)的!
回复 支持 反对

使用道具 举报

发表于 2024-8-15 09:02 | 显示全部楼层
elim 发表于 2024-8-15 07:19
因 \(m\not\in\small\displaystyle\bigg(\bigcap_{n< m}A_n\bigg)\cap A_m\cap\bigg(\bigcap_{n>m}A_n\bigg ...


一、再证\(\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\)。
【证明:】根据elim所给单调递减集列的定义式\(A_n:={m∈N:m>n}\)得:\(A_1=\{2,3,4,……\}\);\(A_2=\{3,4,5……\}\),……\(A_k=\{k+1,k+2,k+3,……\}\),
……,易知\(A_k\supset A_{k+1}\),\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}\);所以:\(\displaystyle\bigcap_{n=1}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)\(\displaystyle\bigcap_{n=2}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)……\(\displaystyle\bigcap_{n=k}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)…………\(\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)\(\displaystyle\bigcap_{n={∞-1}}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}=\)\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\).
小结:elim在论证\(N_∞=\phi\)的过程中,①、只注意到\(\forall m∈\mathbb{N},m\notin A_m\),确实无视众多大于m的自然数属于\(A_m\);②、始终无视&#8204;皮亚诺公理(Peano axioms)第二条,坚持认为自然数是有限数。不承认\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\).从而导致\(\displaystyle\lim_{n \to \infty} n\)无前趋,从而异致\(A_{∞-1}=\phi\)……直至\(A_1=\phi\)。③、elim在论证\(N_∞=\phi\)过程中始终不敢用集合交的定义和求交运算的运运算规律。甚至他自己的定义都不用。
二、对elim副帖的剖析
        elim为说明【主贴不是辩解而是向网友揭示蠢氏非空的错误】,并强调说【本贴首行给出了第二行的无可反驳的简捷证明】,现把这个无可反驳的简捷证明复制于后【\(\because\quad m\notin(\displaystyle\bigcap_{n<m} A_n\))\(\bigcap A_m\bigcap(\displaystyle\bigcap_{n>m}A_n)=\)\(N_∞(\forall m∈\mathbb{N})\)
\(\quad\therefore N_∞=\phi\)】
       elim这个副帖并无什么新意,从一可知,虽然\(\because\quad m\notin(\displaystyle\bigcap_{n<m} A_n\))\(\bigcap A_m\bigcap(\displaystyle\bigcap_{n>m}A_n)=\)\(N_∞(\forall m∈\mathbb{N})\)中的\(\because\)成立,但笫二行的\ (\therefore\)仍不成立。原因是因为中的m与取自\(A_n^c\)它固然不属于\(N_∞ =\displaystyle\lim_{n \to \infty} A_n\)。这也是你和你的婊子门生,坚决反对用周民强《实变函数论》P9定义1.8证明 \(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}≠\phi\)的主要原因。就连你自己都知道你那个【无穷交就是一种骤变】是错误的!
不管我这个【死磕周民强的集论白痴】看不看得懂你的这个副帖,你都无法改变你若遵从『从命题的题设出发,根据已知的定义,公理、定理逐步推导出命题结论』论证范式,你是证明不到\(N_∞=\phi\)的!

点评

使用定义1.8推导《实变函数论》例5例6,意味着与《实变函数解题指南》8页例7解法类似(尽管此例并非单调集列极限),过程中实际上不会出现集列极限。大家都看到老狗婊子仍然反其道而行之,也就知道她还在反对周民强.  发表于 2024-8-15 13:01
老狗婊子也不敢提她已经看过《实变函数解题指南》8页例7解法,却根本看不懂的事实。  发表于 2024-8-15 10:34
这个问题的解法里,不需要甚至不应该出现集合极限符号,正如《实变函数解题指南》8页例7的解法一样。老狗婊子看不懂8页例7解法,做不出《实变函数论》5页例2,《集合论》35页习题4和6,只能天天被骂得狗血喷头。  发表于 2024-8-15 10:28
回复 支持 反对

使用道具 举报

发表于 2024-8-15 15:29 | 显示全部楼层
elim 发表于 2024-8-15 11:15
蠢疯顽瞎又臭又长的胡扯经不起以下寥寥数语的拨乱反正:
因 \(m\not\in\small\displaystyle\bigg(\bigcap_ ...


一、再证\(\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\)。
【证明:】根据elim所给单调递减集列的定义式\(A_n:={m∈N:m>n}\)得:\(A_1=\{2,3,4,……\}\);\(A_2=\{3,4,5……\}\),……\(A_k=\{k+1,k+2,k+3,……\}\),
……,易知\(A_k\supset A_{k+1}\),\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}\);所以:\(\displaystyle\bigcap_{n=1}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)\(\displaystyle\bigcap_{n=2}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)……\(\displaystyle\bigcap_{n=k}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)…………\(\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}\)\(\displaystyle\bigcap_{n={∞-1}}^∞ A_n\underline{\underline{\quad 若A\subset B,则A=A\cap B\quad}}=\)\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\).
小结:elim在论证\(N_∞=\phi\)的过程中,①、只注意到\(\forall m∈\mathbb{N},m\notin A_m\),确实无视众多大于m的自然数属于\(A_m\);②、始终无视&#8204;皮亚诺公理(Peano axioms)第二条,坚持认为自然数是有限数。不承认\(A_∞=\displaystyle\lim_{n \to\infty}\{n+1,n+2,…\}≠\phi\).从而导致\(\displaystyle\lim_{n \to \infty} n\)无前趋,从而异致\(A_{∞-1}=\phi\)……直至\(A_1=\phi\)。③、elim在论证\(N_∞=\phi\)过程中始终不敢用集合交的定义和求交运算的运运算规律。甚至他自己的定义都不用。
二、对elim副帖的剖析
        elim为说明【主贴不是辩解而是向网友揭示蠢氏非空的错误】,并强调说【本贴首行给出了第二行的无可反驳的简捷证明】,现把这个无可反驳的简捷证明复制于后【\(\because\quad m\notin(\displaystyle\bigcap_{n<m} A_n\))\(\bigcap A_m\bigcap(\displaystyle\bigcap_{n>m}A_n)=\)\(N_∞(\forall m∈\mathbb{N})\)
\(\quad\therefore N_∞=\phi\)】
       elim这个副帖并无什么新意,从一可知,虽然\(\because\quad m\notin(\displaystyle\bigcap_{n<m} A_n\))\(\bigcap A_m\bigcap(\displaystyle\bigcap_{n>m}A_n)=\)\(N_∞(\forall m∈\mathbb{N})\)中的\(\because\)成立,但笫二行的\ (\therefore\)仍不成立。原因是因为中的m与取自\(A_n^c\)它固然不属于\(N_∞ =\displaystyle\lim_{n \to \infty} A_n\)。这也是你和你的婊子门生,坚决反对用周民强《实变函数论》P9定义1.8证明 \(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}≠\phi\)的主要原因。就连你自己都知道你那个【无穷交就是一种骤变】是错误的!
不管我这个【死磕周民强的集论白痴】看不看得懂你的这个副帖,你都无法改变你若遵从『从命题的题设出发,根据已知的定义,公理、定理逐步推导出命题结论』论证范式,你是证明不到\(N_∞=\phi\)的!
回复 支持 反对

使用道具 举报

发表于 2024-8-15 15:31 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-8-15 15:38 编辑


落水狗婊子:elim所给集列是单调递减集列,求单调集列极限集的最简方法,就是运用周民强《实变函数论》P9定义1.8。由于该法不易渗假作弊,更不容elim的“臭便”思想。所以被以“精通集合论”自许的混球所不待见!不管老子看没看过【实变函数解题指南》8页例7解法】,也不管老子是否看不懂这个解法?弥龟儿子倒是给众网友说说个【实变函数解题指南》8页例7解法】与elim的单调递减集列有什么关系。难道这个【实变函数解题指南》8页例7解法】为elim的“臭便” 提供了理论甚础吗?真他妈的扯淡?落水狗婊子:【这个问题的解法里,不需要甚至不应该出现集合极限符号】?为什么【不需要甚至不应该出集合的极限符号】?是不是用了集合的极限符号就能证否elim的\(N_∞=\phi\)穿帮露馅?我虽然暂时没有《实变函数解题指南》一书,但根据你龟儿子的只言片语的叙述,你说的8页例7一定是一个与单调递减集列无关的题,你龟儿子自以为看懂8页例7解法,就能解决elim的单调集列极限集的问题。你妈的个巴子,周民强《实变函数论》5页例2,周老先生写得很清楚,还有什么要你龟儿子去做的?至于方嘉琳《集合论》35页习题4和6,我将在离开论后发布在网上。你龟儿子要骂人,跟狗要狂吠有什么区別。臭婊子,就算你把我逼出论坛,你主子的“臭便”仍然是臭便\(\because\quad m\notin(\displaystyle\bigcap_{n<m} A_n\)\(\bigcap A_m\bigcap(\displaystyle\bigcap_{n>m}A_n)=\)\(N_∞=(\forall m∈N)\)
\(\quad N_∞=\phi\)?另外,告诉你凡讨论自然数的问题,必须考虑皮亚诺然公理(Peano axioms),否则就不自洽!

点评

老狗婊子老是想拿它篡改的“皮亚诺公理”来推翻elim先生的正确推导。照你的屁话,凡是讨论实数的问题,就必须考虑自然数集是实数集的真子集,妄想推翻elim先生推导,等于是推翻《实变函数论》例5,贼心不死啊!  发表于 2024-8-15 20:18
老狗婊子说《集合论》35页习题4和6要等出院后再发,说明她就是不会做。她要但凡会做,现在就已经发上来了。能有时间发这么多条裹脚布,区区两道小题的解法却发不出来,当大家都这么好骗吗?  发表于 2024-8-15 20:14
你狗日的少废话,也别管周民强例2有没写出答案,现在的事实就是你看不懂《实变函数解题指南》8页例7解法,做不出《实变函数论》5页例2,《集合论》35页习题4和6,所以活该天天挨骂。  发表于 2024-8-15 20:12
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-8-15 21:12 | 显示全部楼层
集论白痴无法面对以下事实的根本原因,是因为种太孬:
因 \(m\not\in\small\displaystyle\bigg(\bigcap_{n< m}A_n\bigg)\cap A_m\cap\bigg(\bigcap_{n>m}A_n\bigg)=N_{\infty}\), 对任意\(m\in\mathbb{N}_+\) 均成立,
故 \(N_{\infty}=\varnothing.\)   所以孬种的任何\(N_{\infty}\)非空的’证明’都是痴人说梦.

既然\(N_{\infty}\)是空集,蠢疯当然给不出其成员.
正是:顽瞎力挺[蠢可达], 蠢疯死磕周民强. 集论白痴自捣蛋,归根结底种太孬

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-12 00:45 , Processed in 0.106778 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表