数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\textbf{孬种反数学不惜篡改德摩律}\)

[复制链接]
发表于 2024-8-25 12:42 | 显示全部楼层
elim 发表于 2024-8-25 12:41
没有人能给出\(N_{\infty}\)的成员,因为\(N_{\infty}=\phi\)不是观点而是事实。
数学一行轻巧定乾坤, 笑 ...


也说数学一行轻巧定乾坤, 笑看elim【无穷交就是一种骤变】
\(\forall m∈N(m∈A_m^c)\implies m+j∈A_m(j∈N)\)\implies(m∈(\displaystyle\bigcup_{n=1}^∞ A_m\implies\displaystyle\lim_{m→∞}(m+j)(j∈N)∈\displaystyle\bigcap_{n =1}^∞ A_m\)
\Longrightarrow N_∞≠\phi\)
elim认为【没有人能给出\(N_∞\)的成员,因为\(N_∞=\phi\)不是观点而是事实】诡辩无效!至少名人中Cantor、Peano、Engels以及全世界教过、学过《实变函数论》的人都【能给出\(N_∞\)的成员】。同时,不同范畴的事实不能互证命题的真伪!如用“狗要吃屎”的事实,就不能证明“人不吃屎”的真伪!
回复 支持 反对

使用道具 举报

发表于 2024-8-25 12:53 | 显示全部楼层
elim 发表于 2024-8-25 12:45
没有人能给出\(N_{\infty}\)的成员,因为\(N_{\infty}=\phi\)不是观点而是事实。
数学一行轻巧定乾坤, 笑 ...


也说数学一行轻巧定乾坤, 笑看elim【无穷交就是一种骤变】
\(\forall m∈N(m∈A_m^c)\implies m+j∈A_m(j∈N)\)\implies(m∈(\displaystyle\bigcup_{n=1}^∞ A_m\implies\displaystyle\lim_{m→∞}(m+j)(j∈N)∈\displaystyle\bigcap_{n =1}^∞ A_m\)
\Longrightarrow N_∞≠\phi\)
elim认为【没有人能给出\(N_∞\)的成员,因为\(N_∞=\phi\)不是观点而是事实】诡辩无效!至少名人中Cantor、Peano、Engels以及全世界教过、学过《实变函数论》的人都【能给出\(N_∞\)的成员】。同时,不同范畴的事实不能互证命题的真伪!如用“狗要吃屎”的事实,就不能证明“人不吃屎”的真伪!
回复 支持 反对

使用道具 举报

发表于 2024-8-25 13:30 | 显示全部楼层
elim 发表于 2024-8-25 13:26
若\(m\in\displaystyle\bigcap_{n=1}^\infty A_n=N_{\infty}\), 那么 \(m\) 是 \(\{A_n\}\) 的公共成员,
...


也说数学一行轻巧定乾坤, 笑看elim【无穷交就是一种骤变】
\(\forall m∈N(m∈A_m^c)\implies m+j∈A_m(j∈N)\)\implies(m∈(\displaystyle\bigcup_{n=1}^∞ A_m\implies\displaystyle\lim_{m→∞}(m+j)(j∈N)∈\displaystyle\bigcap_{n =1}^∞ A_m\)
\Longrightarrow N_∞≠\phi\)
elim认为【没有人能给出\(N_∞\)的成员,因为\(N_∞=\phi\)不是观点而是事实】诡辩无效!至少名人中Cantor、Peano、Engels以及全世界教过、学过《实变函数论》的人都【能给出\(N_∞\)的成员】。同时,不同范畴的事实不能互证命题的真伪!如用“狗要吃屎”的事实,就不能证明“人不吃屎”的真伪!
回复 支持 反对

使用道具 举报

发表于 2024-8-25 13:33 | 显示全部楼层
elim 发表于 2024-8-25 13:32
若\(m\in\displaystyle\bigcap_{n=1}^\infty A_n=N_{\infty}\), 那么 \(m\) 是 \(\{A_n\}\) 的公共成员,
...


也说数学一行轻巧定乾坤, 笑看elim【无穷交就是一种骤变】
\(\forall m∈N(m∈A_m^c)\implies m+j∈A_m(j∈N)\)\implies(m∈(\displaystyle\bigcup_{n=1}^∞ A_m\implies\displaystyle\lim_{m→∞}(m+j)(j∈N)∈\displaystyle\bigcap_{n =1}^∞ A_m\)
\Longrightarrow N_∞≠\phi\)
elim认为【没有人能给出\(N_∞\)的成员,因为\(N_∞=\phi\)不是观点而是事实】诡辩无效!至少名人中Cantor、Peano、Engels以及全世界教过、学过《实变函数论》的人都【能给出\(N_∞\)的成员】。同时,不同范畴的事实不能互证命题的真伪!如用“狗要吃屎”的事实,就不能证明“人不吃屎”的真伪!
回复 支持 反对

使用道具 举报

发表于 2024-8-25 13:45 | 显示全部楼层

也说数学一行轻巧定乾坤, 笑看elim【无穷交就是一种骤变】
\(\forall m∈N(m∈A_m^c)\implies m+j∈A_m(j∈N)\)\implies(m∈(\displaystyle\bigcup_{n=1}^∞ A_m\implies\displaystyle\lim_{m→∞}(m+j)(j∈N)∈\displaystyle\bigcap_{n =1}^∞ A_m\)
\Longrightarrow N_∞≠\phi\)
elim认为【没有人能给出\(N_∞\)的成员,因为\(N_∞=\phi\)不是观点而是事实】诡辩无效!至少名人中Cantor、Peano、Engels以及全世界教过、学过《实变函数论》的人都【能给出\(N_∞\)的成员】。同时,不同范畴的事实不能互证命题的真伪!如用“狗要吃屎”的事实,就不能证明“人不吃屎”的真伪!
回复 支持 反对

使用道具 举报

发表于 2024-8-25 13:51 | 显示全部楼层
elim 发表于 2024-8-25 13:48
若\(m\in\displaystyle\bigcap_{n=1}^\infty A_n=N_{\infty}\), 那么 \(m\) 是 \(\{A_n\}\) 的公共成员,
...


也说数学一行轻巧定乾坤, 笑看elim【无穷交就是一种骤变】
\(\forall m∈N(m∈A_m^c)\implies m+j∈A_m(j∈N)\)\implies(m∈(\displaystyle\bigcup_{n=1}^∞ A_m\implies\displaystyle\lim_{m→∞}(m+j)(j∈N)∈\displaystyle\bigcap_{n =1}^∞ A_m\)
\Longrightarrow N_∞≠\phi\)
elim认为【没有人能给出\(N_∞\)的成员,因为\(N_∞=\phi\)不是观点而是事实】诡辩无效!至少名人中Cantor、Peano、Engels以及全世界教过、学过《实变函数论》的人都【能给出\(N_∞\)的成员】。同时,不同范畴的事实不能互证命题的真伪!如用“狗要吃屎”的事实,就不能证明“人不吃屎”的真伪!
回复 支持 反对

使用道具 举报

发表于 2024-8-25 13:53 | 显示全部楼层
elim 发表于 2024-8-25 13:51
不管孬种\(N_{\infty}\ne\phi\)的猿声咋样啼,它都是个自蛋自捣的蠢东西
若\(m\in\displaystyle\bigcap_{n ...


也说数学一行轻巧定乾坤, 笑看elim【无穷交就是一种骤变】
\(\forall m∈N(m∈A_m^c)\implies m+j∈A_m(j∈N)\)\implies(m∈(\displaystyle\bigcup_{n=1}^∞ A_m\implies\displaystyle\lim_{m→∞}(m+j)(j∈N)∈\displaystyle\bigcap_{n =1}^∞ A_m\)
\Longrightarrow N_∞≠\phi\)
elim认为【没有人能给出\(N_∞\)的成员,因为\(N_∞=\phi\)不是观点而是事实】诡辩无效!至少名人中Cantor、Peano、Engels以及全世界教过、学过《实变函数论》的人都【能给出\(N_∞\)的成员】。同时,不同范畴的事实不能互证命题的真伪!如用“狗要吃屎”的事实,就不能证明“人不吃屎”的真伪!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-8-25 13:53 | 显示全部楼层
不管孬种\(N_{\infty}\ne\phi\)的猿声咋样啼,它都是个自蛋自捣的蠢东西
若\(m\in\displaystyle\bigcap_{n=1}^\infty A_n=N_{\infty}\), 那么 \(m\) 是 \(\{A_n\}\) 的公共成员,
特别地, 必有 \(m\) 是 \(A_m\) 的成员,这与\(A_m\) 的定义不合。
所以 \(N_{\infty}\) 不能有成员,否则就出矛盾.. 即使孬种楞称\(\mathbb{N}\)
有无穷大元素也没有用.


蠢疯力挺【蠢可达】,孬种死磕集合论.  不是顽瞎不努力,要怪还怪种太孬。
回复 支持 反对

使用道具 举报

发表于 2024-8-25 13:54 | 显示全部楼层
elim 发表于 2024-8-25 13:53
不管孬种\(N_{\infty}\ne\phi\)的猿声咋样啼,它都是个自蛋自捣的蠢东西
若\(m\in\displaystyle\bigcap_{n ...


也说数学一行轻巧定乾坤, 笑看elim【无穷交就是一种骤变】
\(\forall m∈N(m∈A_m^c)\implies m+j∈A_m(j∈N)\)\implies(m∈(\displaystyle\bigcup_{n=1}^∞ A_m\implies\displaystyle\lim_{m→∞}(m+j)(j∈N)∈\displaystyle\bigcap_{n =1}^∞ A_m\)
\Longrightarrow N_∞≠\phi\)
elim认为【没有人能给出\(N_∞\)的成员,因为\(N_∞=\phi\)不是观点而是事实】诡辩无效!至少名人中Cantor、Peano、Engels以及全世界教过、学过《实变函数论》的人都【能给出\(N_∞\)的成员】。同时,不同范畴的事实不能互证命题的真伪!如用“狗要吃屎”的事实,就不能证明“人不吃屎”的真伪!
回复 支持 反对

使用道具 举报

发表于 2024-8-25 13:56 | 显示全部楼层
elim 发表于 2024-8-25 13:54
不管孬种\(N_{\infty}\ne\phi\)的猿声咋样啼,它都是个自蛋自捣的蠢东西
若\(m\in\displaystyle\bigcap_{n ...


也说数学一行轻巧定乾坤, 笑看elim【无穷交就是一种骤变】
\(\forall m∈N(m∈A_m^c)\implies m+j∈A_m(j∈N)\)\implies(m∈(\displaystyle\bigcup_{n=1}^∞ A_m\implies\displaystyle\lim_{m→∞}(m+j)(j∈N)∈\displaystyle\bigcap_{n =1}^∞ A_m\)
\Longrightarrow N_∞≠\phi\)
elim认为【没有人能给出\(N_∞\)的成员,因为\(N_∞=\phi\)不是观点而是事实】诡辩无效!至少名人中Cantor、Peano、Engels以及全世界教过、学过《实变函数论》的人都【能给出\(N_∞\)的成员】。同时,不同范畴的事实不能互证命题的真伪!如用“狗要吃屎”的事实,就不能证明“人不吃屎”的真伪!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-12 00:38 , Processed in 0.091755 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表