陆老师的结论是对的。\(\frac{ha*hb}{ha+hb}<hc<\frac{ha*hb}{ha-hb}\ \ \ ha≥hb\)
已知三角形两条高分别为 ha(整数) 和 hb(整数), 求第三条高 hc(整数) 的取值范围。
ha=1,hb=2,hc有1个解。hc=1,{{a -> 8/Sqrt[15], b -> 4/Sqrt[15], c -> 8/Sqrt[15]}},
ha=2,hb=3,hc有4个解。hc=2,{{a -> 9/(2 Sqrt[2]), b -> 3/Sqrt[2], c -> 9/(2 Sqrt[2])}},
hc=3,{{a -> 12/Sqrt[7], b -> 8/Sqrt[7], c -> 8/Sqrt[7]}},
hc=4,{{a -> 144/Sqrt[455], b -> 96/Sqrt[455], c -> 72/Sqrt[455]}},
hc=5,{{a -> 900/Sqrt[6479], b -> 600/Sqrt[6479], c -> 360/Sqrt[6479]}},
ha=3,hb=4,hc有10个解。hc=2,{{a -> 4.50055, b -> 3.37541, c -> 6.75082}},
hc=3,{{a -> 4.31488, b -> 3.23616, c -> 4.31488}},
hc=4,{{a -> 5.36656, b -> 4.02492, c -> 4.02492}},
hc=5,{{a -> 6.69152, b -> 5.01864, c -> 4.01491}},
hc=6,{{a -> 8.26236, b -> 6.19677, c -> 4.13118}},
hc=7,{{a -> 10.1587, b -> 7.61905, c -> 4.35374}},
hc=8,{{a -> 12.5581, b -> 9.41861, c -> 4.7093}},
hc=9,{{a -> 15.8406, b -> 11.8804, c -> 5.28018}},
hc=10,{{a -> 20.9857, b -> 15.7393, c -> 6.29572}},
hc=11,{{a -> 31.8450, b -> 23.8837, c -> 8.685}},
ha=4,hb=5,hc有17个解。
ha=5,hb=6,hc有27个解。
ha=6,hb=7,hc有38个解。
ha=7,hb=8,hc有52个解。
ha=8,hb=9,hc有67个解。
.....
{1, 4, 10, 17, 27, 38, 52, 67, 85, 104, 126, 149, 175, 202, 232, 263, 297, 332, 370, 409, 451, 494, 540, 587, 637, 688, 742, 797, 855, 914, 976, 1039, 1105, 1172, 1242, 1313, 1387, 1462, 1540,
1619, 1701, 1784, 1870, 1957, 2047, 2138, 2232, 2327, 2425, 2524, 2626, 2729, 2835, 2942, 3052, 3163, 3277, 3392, 3510, 3629, 3751, 3874, 4000, 4127, 4257, 4388, 4522, 4657, 4795, 4934,
5076, 5219, 5365, 5512, 5662, 5813, 5967, 6122, 6280, 6439, 6601, 6764, 6930, 7097, 7267, 7438, 7612, 7787, 7965, 8144, 8326, 8509, 8695, 8882, 9072, 9263, 9457, 9652, 9850, 10049, ......}
- Table[Floor[(2 n^2 + n - 1)/2], {n, 99}]
复制代码
OEIS有这串数——A213398——可没有这样的索引。 |