|
对 \(m,n\in \mathbb{Z}, n\ne 0,\) 令 \(k=\gcd(m,n), p=m/k,\)
\(q=n/k, \;\)则 \(\gcd(p,q)=1\) 且 \(m/n=p/q.\) 所以
\(\mathbb{Q}=\{{\large\frac{m}{n}}\mid m,n\in\mathbb{Z},\,n\ne 0\}\)
\(\,\quad= \{{\large\frac{p}{q}}\mid p,q\in\mathbb{Z},\,q\ne 0,\,\gcd(p,q)=1\}\)
所以 \((r\text{ 为有理数})\iff\)
\(\qquad\;(\exists p,q\in\mathbb{Z}\,(r={\large\frac{p}{q}},\,\gcd(p,q)=1,\,q\ne 0))\) |
|