数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

孬种搅而06\(\Huge\color{green}{\mathbb{N}\textbf{没有无穷元}}\)

[复制链接]
发表于 2025-5-20 08:50 | 显示全部楼层
由皮亚诺公理得自然数的递归集(\(\dagger\))\(0=\phi\),\(n+1=n\cup\{n\}=\{0,…,n\}\)得\(\displaystyle\lim_{n \to \infty}n\in\)\(\{0,1,2,…,\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty} (n+1)\),【自然数皆为\(\mathbb{N}\)的真子集】尚等证明,不能作为论据!你说了半天,并没有说清楚什么是自然数?为什么\(\displaystyle\lim_{n \to \infty}n\)不是自然数?难道这就是你的底层逻辑?是的,\(\mathbb{N}\)无最大元。试问elim你见过哪 家的数学理论中有最大无穷大,较大无穷大,最小无穷大的提法?谁是白痴岂不显而易见?关于【孬种使用 lim n 而给不出其定义已经两年了】真是扯淡!两年来我多次用康托尔的“数\(v=\displaystyle\lim_{n \to \infty}n\)既表示把一个个单位放上去的确切计数,又表示它们汇集所成的整体“,这算得上是对\(\displaystyle\lim_{n \to \infty}n\)的定义了吧?
回复 支持 反对

使用道具 举报

发表于 2025-5-20 09:19 | 显示全部楼层
由皮亚诺公理得自然数的递归集(\(\dagger\))\(0=\phi\),\(n+1=n\cup\{n\}=\{0,…,n\}\)得\(\displaystyle\lim_{n \to \infty}n\in\)\(\{0,1,2,…,\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty} (n+1)\),【自然数皆为\(\mathbb{N}\)的真子集】尚等证明,不能作为论据!你说了半天,并没有说清楚什么是自然数?为什么\(\displaystyle\lim_{n \to \infty}n\)不是自然数?难道这就是你的底层逻辑?是的,\(\mathbb{N}\)无最大元。试问elim你见过哪 家的数学理论中有最大无穷大,较大无穷大,最小无穷大的提法?谁是白痴岂不显而易见?关于【孬种使用 lim n 而给不出其定义已经两年了】真是扯淡!两年来我多次用康托尔的“数\(v=\displaystyle\lim_{n \to \infty}n\)既表示把一个个单位放上去的确切计数,又表示它们汇集所成的整体“,这算得上是对\(\displaystyle\lim_{n \to \infty}n\)的定义了吧?
回复 支持 反对

使用道具 举报

发表于 2025-5-20 09:50 | 显示全部楼层
由皮亚诺公理得自然数的递归集(\(\dagger\))\(0=\phi\),\(n+1=n\cup\{n\}=\{0,…,n\}\)得\(\displaystyle\lim_{n \to \infty}n\in\)\(\{0,1,2,…,\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty} (n+1)\),【自然数皆为\(\mathbb{N}\)的真子集】尚等证明,不能作为论据!你说了半天,并没有说清楚什么是自然数?为什么\(\displaystyle\lim_{n \to \infty}n\)不是自然数?难道这就是你的底层逻辑?是的,\(\mathbb{N}\)无最大元。试问elim你见过哪 家的数学理论中有最大无穷大,较大无穷大,最小无穷大的提法?谁是白痴岂不显而易见?关于【孬种使用 lim n 而给不出其定义已经两年了】真是扯淡!两年来我多次用康托尔的“数\(v=\displaystyle\lim_{n \to \infty}n\)既表示把一个个单位放上去的确切计数,又表示它们汇集所成的整体“,这算得上是对\(\displaystyle\lim_{n \to \infty}n\)的定义了吧?
回复 支持 反对

使用道具 举报

发表于 2025-5-20 10:53 | 显示全部楼层
由皮亚诺公理得自然数的递归集(\(\dagger\))\(0=\phi\),\(n+1=n\cup\{n\}=\{0,…,n\}\)得\(\displaystyle\lim_{n \to \infty}n\in\)\(\{0,1,2,…,\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty} (n+1)\),【自然数皆为\(\mathbb{N}\)的真子集】尚等证明,不能作为论据!你说了半天,并没有说清楚什么是自然数?为什么\(\displaystyle\lim_{n \to \infty}n\)不是自然数?难道这就是你的底层逻辑?是的,\(\mathbb{N}\)无最大元。试问elim你见过哪 家的数学理论中有最大无穷大,较大无穷大,最小无穷大的提法?谁是白痴岂不显而易见?关于【孬种使用 lim n 而给不出其定义已经两年了】真是扯淡!两年来我多次用康托尔的“数\(v=\displaystyle\lim_{n \to \infty}n\)既表示把一个个单位放上去的确切计数,又表示它们汇集所成的整体“,这算得上是对\(\displaystyle\lim_{n \to \infty}n\)的定义了吧?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-5-20 23:33 | 显示全部楼层
孬种使用 lim n 而给不出其定义已经两年了
“一个个放”的计数不是\(\small\aleph_0=\aleph_0+250\)能是啥?
它确切吗? 是自然数吗?
称 \(\displaystyle\lim_{n\to\infty} n\in\{0,1,\ldots,\displaystyle\lim_{n\to\infty} n\}=\mathbb{N},\) 难道
\(\displaystyle\lim_{n\to\infty} n\)是\(\mathbb{N}\)的最大元?\(\mathbb{N}\)有最大元吗,白痴?
回复 支持 反对

使用道具 举报

发表于 2025-5-21 04:16 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
       试问elim在\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)的题设条件下,根据Peano axioms证明了每个小于\(\displaystyle\lim_{n \to \infty}n\)的自然数都不属于\(\mathbb{N}\),那\(\mathbb{N}\)不是空集还能是什么?你他娘的【根本导不岀\(\mathbb{N}=\phi\)】就是扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-5-21 04:17 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)

【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
       试问elim在\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)的题设条件下,根据Peano axioms证明了每个小于\(\displaystyle\lim_{n \to \infty}n\)的自然数都不属于\(\mathbb{N}\),那\(\mathbb{N}\)不是空集还能是什么?你他娘的【根本导不岀\(\mathbb{N}=\phi\)】就是扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-5-23 05:43 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-5-23 06:59 编辑

elim,\(\displaystyle\lim_{n \to \infty}n\)的定义无需我给出,也容不得你对这个定义作胡乱的诠释!任何一本《实变函数论》或《集合论》中均有这个定义!\(\displaystyle\lim_{n \to \infty}n\in\)\(\{0,1,…,\)\(\displaystyle\lim_{n \to \infty}n\}\)\(=\mathbb{N}\)有什么错?elim不能正确理无穷大与最大的区别。请elim明示你在哪家数学理论中发现有“无穷大就最大”的提法?在你证明【无穷交就是一种骤变】的“底层逻辑”中,不也给出了\(\{1,2,…,\displaystyle\lim_{n \to \infty}n\}\)\(=\mathbb{N}\)吗?不管根据皮亚诺公理、康托尔实整数生成法则还是冯\(\cdot\)诺依曼自然数生成法都有\(\displaystyle\lim_{n \to \infty}(n-j)=\)\(\infty\)(j是有限自然数),若\(\mathbb{N}\)不含这些无穷元,还能说\(\mathbb{N}\)中的自然数有无穷多个吗?elim你自以为很得意的“底层逻辑”其实就是产生各种“臭便”的诡辩!至于\(\aleph_0=\)\(\aleph_0+250\)这是elim对康托尔“数\(v=\displaystyle\lim_{n \to \infty}n\)既表示把一个个单位放上去的确切计数,又表示它们汇集成的整体”的诋毁!学过《实变函数论》的网友都知道:\(\aleph_0\)是以可列集为单位的元素个数的计数(或可列集的势)!试问elim,你的\(\aleph_0=\aleph_0\)\(+250\)是个什么玩意?elim历来双标,凡和你认识不一致东西一定是別人错了,你总会运用你的“底层逻辑”去使之成为“臭便”。最后特列指出冯\(\cdot\)自然数生成法则中的\(n=\{0,1,\)\(2,…,(n-1)\}\)讲的自然数n是集合\(\{0,1,…,(n-1)\}\)中元素的个数!或者说n是集合\(\{0,1,…,(n-1)\}\)的后继,仅此而已。
回复 支持 反对

使用道具 举报

发表于 2025-5-23 22:50 | 显示全部楼层
elim,\(\displaystyle\lim_{n \to \infty}n\)的定义无需我给出,任何一本《实变函数论》教科书中均有它的定义!更容不得你对这个定义作胡乱的诠释!\(\displaystyle\lim_{n \to \infty}n\in\)\(\{0,1,…,\)\(\displaystyle\lim_{n \to \infty}n\}\)\(=\mathbb{N}\)有什么错?elim不能正确理无穷大与最大的区别。请elim明示你在哪家数学理论中发现有“无穷大就最大”的提法?在你证明【无穷交就是一种骤变】的“底层逻辑”中,不也给出了\(\{1,2,…,\displaystyle\lim_{n \to \infty}n\}\)\(=\mathbb{N}\)吗?不管根据皮亚诺公理、康托尔实整数生成法则还是冯\(\cdot\)诺依曼自然数生成法都有\(\displaystyle\lim_{n \to \infty}(n-j)=\)\(\infty\)(j是有限自然数),若\(\mathbb{N}\)不含这些无穷元,还能说\(\mathbb{N}\)中的自然数有无穷多个吗?elim你自以为很得意的“底层逻辑”其实就是产生各种“臭便”的诡辩!至于\(\aleph_0=\)\(\aleph_0+250\)这是elim对康托尔“数\(v=\displaystyle\lim_{n \to \infty}n\)既表示把一个个单位放上去的确切计数,又表示它们汇集成的整体”的诋毁!学过《实变函数论》的网友都知道:\(\aleph_0\)是以可列集为单位的元素个数的计数(或可列集的势)!试问elim,你的\(\aleph_0=\aleph_0\)\(+250\)是个什么玩意?elim历来双标,凡和你认识不一致东西一定是別人错了,你总会运用你的“底层逻辑”去使之成为“臭便”。最后特列指出冯\(\cdot\)自然数生成法则中的\(n=\{0,1,…,(n-1)\}\)讲的自然数n是集合\(\{0,1,…,(n-1)\}\)中元素的个数!或者说n是集合\(\{0,1,…,(n-1)\}\)的后继,仅此而已。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-5-24 00:24 | 显示全部楼层
孬种使用 lim n 而拒绝其定义已经两年了
因为lim n 各层面的定义均表明 lim n 非自然数,

孬种需要虚无化 lim n 的定义以便把它忽悠成自
然数.“一个个加”的计数不是\(\small\aleph_0=\aleph_0\small+250\)能是
啥?它确切吗? 是自然数吗?
实变函数明确指出 lim n 是\(\small\infty\)不是实数因而非
自然数.  靠驴打滚及回避极限定义渡日的蠢疯
称 \(\displaystyle\lim_{n\to\infty} n\in\{0,1,\ldots,\displaystyle\lim_{n\to\infty} n\}=\mathbb{N},\)
如果 \(0,1,\ldots, \displaystyle\lim_{n\to\infty} n\)是全部自然数的升排列, 那
么\(\displaystyle\lim_{n\to\infty} n\)是最大自然数, 但自然数没有最大. 所以
孬种这么多驴滚贴就是想要显摆其首席白痴的非
凡;如果孬种否定\(\displaystyle\lim_{n\to\infty} n\)是最大自然数并且接受
实变函数等式\(\displaystyle\lim_{n\to\infty} n=\infty\), 由\(\infty\pm 1\) 即知\(\displaystyle\lim_{n\to\infty} n\)
反皮亚诺公理,所以不是自然数.
本贴说明了孬种不敢面对 lim n 的原因.
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-16 05:54 , Processed in 0.094634 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表