|
|
本帖最后由 春风晚霞 于 2025-5-20 14:25 编辑
由皮亚诺公理得自然数的递归集\((\dagger)\quad\)\(0=\phi\),\(n+1=n\cup\{n\}=\{0,1,2,\)\(…,n\}\)得\(\displaystyle\lim_{n \to \infty}n\in\)\(\{0,1,2,…,\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty} (n+1)\),【自然数皆为\(\mathbb{N}\)的真子集】尚等证明,不能作为论据!你说了半天,并没有说清楚什么是自然数?为什么\(\displaystyle\lim_{n \to \infty}n\)不是自然数?你又凭什么说\(\mathbb{N}\)不是自然数集?难道这就是你的底层逻辑?是的,\(\mathbb{N}\)无最大元。试问elim,你见过哪家数学理论中有最大无穷大,较大无穷大,最小无穷大的提法?谁是白痴岂不显而易见?关于【孬种使用 lim n 而给不出其定义已经两年了】真是扯淡!两年来我多次用康托尔的“数\(v=\displaystyle\lim_{n \to \infty}n\)既表示把一个个单位放上去的确切计数,又表示它们汇集所成的整体”,这算得上是对\(\displaystyle\lim_{n \to \infty}n\)的定义了吧?对康托尔对数\(v\)的定义,你理解不了并不等于康托尔的这个说法就错了!\(\aleph_0\)是可列集合的势,它离开可列集这个研究实体,它并不具有任何数学意义。因为250不是哪个无限可列集的势,所以\(\aleph_0=\)\(\aleph_0+250\)没有数学意义。其实,如果把elim不看作是人而看作是一变元,我们说elim=249+1这是有意义的. |
|