数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\star\color{darkorange}{\textbf{ 浅析}}\color{navy}{\textbf{顽瞎目测}}\)

[复制链接]
发表于 2025-8-2 13:40 | 显示全部楼层
对elim《浅析顽瞎目测》的非正式回答(正式回答待后补上)
1、什么是目测法。elim所谓的目测法是数学中的常用方法:如再求数列极限我们总是先求数通项的一般表达式\(a_n=f(n)\),再对\(a_n=f(n)\)两边取极限。又如在求数项级数和的计算中,我们总是先示该数项级数的前n项和\(S_n=f(n)\)再对等式\(S_n=f(n)\)两端取极限得\(s=\displaystyle\lim_{n \to \infty}S_n\); 同样在求单调集列极限集时,我们也总是先求该集列的通项表达式\(A_n=f(n)\)再根据单调极限集的定义求\(\displaystyle\lim_{n \to \infty}A_n\)\(=\displaystyle\lim_{n \to \infty}f(n)\).由于这种数学中的常规方法算出的结果与elim【骤变】之法算出的结果不一致。所以elim把这各方法贬之为目测法。
2、“数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整休“这句话来自康托尔《超穷数理论基础》,(页码行号自己去查)。
3、\(\omega\)是最小的超穷序数而不是最小无穷序数是第一个极限序数。在现行中学中最小的极限序数是0,而不是\(\omega\)!
4、\(\displaystyle\lim_{n \to \infty}(n-m)=\)\(\displaystyle\lim_{n \to \infty}n\)\(=sup\mathbb{N}=\omega\)毫无理论支撑,是elim为反现行数学理论根据他【臭便】思想生造出来的等式。
综上陈述,elim才是【拒绝受教的数学盲,  所作的没有数学基础】的混世魔王。
回复 支持 反对

使用道具 举报

发表于 2025-8-2 13:52 | 显示全部楼层
对elim《浅析顽瞎目测》的非正式回答(正式回答待后补上)
1、什么是目测法。elim所谓的目测法是数学中的常用方法:如再求数列极限我们总是先求数通项的一般表达式\(a_n=f(n)\),再对\(a_n=f(n)\)两边取极限。又如在求数项级数和的计算中,我们总是先示该数项级数的前n项和\(S_n=f(n)\)再对等式\(S_n=f(n)\)两端取极限得\(s=\displaystyle\lim_{n \to \infty}S_n\); 同样在求单调集列极限集时,我们也总是先求该集列的通项表达式\(A_n=f(n)\)再根据单调极限集的定义求\(\displaystyle\lim_{n \to \infty}A_n\)\(=\displaystyle\lim_{n \to \infty}f(n)\).由于这种数学中的常规方法算出的结果与elim【骤变】之法算出的结果不一致。所以elim把这各方法贬之为目测法。
2、“数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整休“这句话来自康托尔《超穷数理论基础》,(页码行号自己去查)。
3、\(\omega\)是最小的超穷序数而不是最小无穷序数是第一个极限序数。在现行中学中最小的极限序数是0,而不是\(\omega\)!
4、\(\displaystyle\lim_{n \to \infty}(n-m)=\)\(\displaystyle\lim_{n \to \infty}n\)\(=sup\mathbb{N}=\omega\)毫无理论支撑,是elim为反现行数学理论根据他【臭便】思想生造出来的等式。
综上陈述,elim才是【拒绝受教的数学盲,  所作的没有数学基础】的混世魔王。
回复 支持 反对

使用道具 举报

发表于 2025-8-2 14:25 | 显示全部楼层
对elim《浅析顽瞎目测》的非正式回答(正式回答待后补上)
1、什么是目测法。elim所谓的目测法是数学中的常用方法:如再求数列极限我们总是先求数通项的一般表达式\(a_n=f(n)\),再对\(a_n=f(n)\)两边取极限。又如在求数项级数和的计算中,我们总是先示该数项级数的前n项和\(S_n=f(n)\)再对等式\(S_n=f(n)\)两端取极限得\(s=\displaystyle\lim_{n \to \infty}S_n\); 同样在求单调集列极限集时,我们也总是先求该集列的通项表达式\(A_n=f(n)\)再根据单调极限集的定义求\(\displaystyle\lim_{n \to \infty}A_n\)\(=\displaystyle\lim_{n \to \infty}f(n)\).由于这种数学中的常规方法算出的结果与elim【骤变】之法算出的结果不一致。所以elim把这各方法贬之为目测法。
2、“数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整休“这句话来自康托尔《超穷数理论基础》,(页码行号自己去查)。
3、\(\omega\)是最小的超穷序数而不是最小无穷序数是第一个极限序数。在现行中学中最小的极限序数是0,而不是\(\omega\)!
4、\(\displaystyle\lim_{n \to \infty}(n-m)=\)\(\displaystyle\lim_{n \to \infty}n\)\(=sup\mathbb{N}=\omega\)毫无理论支撑,是elim为反现行数学理论根据他【臭便】思想生造出来的等式。
综上陈述,elim才是【拒绝受教的数学盲,  所作的没有数学基础】的混世魔王。
回复 支持 反对

使用道具 举报

发表于 2025-8-2 14:29 | 显示全部楼层

        【自然数皆有限数】这是民科学者的共同认识,作为民科领袖elim想把这一认识作为数学定理,发扬光大;强迫不同见解的数学人(当然也包括春风晚霞)接受他的歪理邪说\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)。elim论证\(\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)的帖子无一不是循环论证!特别是近段时间elim总把一些被批烂、批臭的宿帖反复放进论坛。elim自知无理取闹,采取发了删,删了又发的流氓手段,并且篇篇均以各种兽语对春风晚霞发动进攻。对于elim这种流氓行为,春风晚霞被迫还击。elim还想把论坛霸屏的责任的甩锅给春风晚霞,真他娘的扯淡!那么现行数学有没有教科书对这个问题进行讨论呢,还是有的。数学家陶哲轩在他的《陶哲轩实分析》第三版P19页2—4行讲道:自然数系能够趋向于无穷大,但它不能取到无穷大,无穷大不是自然数。(存在其它数系,使得“无穷大”是该数系中的元素。例如基数系、序数系以及p进数系),并声明这些数系“完全不在本书的讨论范围之内”。
        理解陶哲轩先生的这段话应该注意以下两点:①自然数可趋向“无穷大”,这是因为在分析数学中,无穷大(即\(\infty\)是集合,是变化趋势)。所以自然数可趋向“无穷大”但不能等于“无穷大”。其实,按陶哲轩先生的观点\(\displaystyle\lim_{n \to \infty}n\)是属于\(\mathbb{N}\)的;由于elim不知道什么是\(\infty\),什么是趋于\(\infty\)。所以elim理解不了\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)的正确性; ②根据陶先生的“存在其它数系,使得“无穷大”是该数系中的元素。例如基数系、序数系以及p进数系)”,集合论是在基数系、序数系下展开讨论的,APB先生是在十进系下展开讨论的。所以春风晚霞的定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)及APB先生“既然\(\mathbb{N}\)是无穷集,则\(\mathbb{N}\)必含无穷大”的论断也是正确的!
回复 支持 反对

使用道具 举报

发表于 2025-8-2 14:38 | 显示全部楼层
对elim《浅析顽瞎目测》的非正式回答(正式回答待后补上)
1、什么是目测法。elim所谓的目测法是数学中的常用方法:如再求数列极限我们总是先求数通项的一般表达式\(a_n=f(n)\),再对\(a_n=f(n)\)两边取极限。又如在求数项级数和的计算中,我们总是先示该数项级数的前n项和\(S_n=f(n)\)再对等式\(S_n=f(n)\)两端取极限得\(s=\displaystyle\lim_{n \to \infty}S_n\); 同样在求单调集列极限集时,我们也总是先求该集列的通项表达式\(A_n=f(n)\)再根据单调极限集的定义求\(\displaystyle\lim_{n \to \infty}A_n\)\(=\displaystyle\lim_{n \to \infty}f(n)\).由于这种数学中的常规方法算出的结果与elim【骤变】之法算出的结果不一致。所以elim把这各方法贬之为目测法。
2、“数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整休“这句话来自康托尔《超穷数理论基础》,(页码行号自己去查)。
3、\(\omega\)是最小的超穷序数而不是最小无穷序数是第一个极限序数。在现行中学中最小的极限序数是0,而不是\(\omega\)!
4、\(\displaystyle\lim_{n \to \infty}(n-m)=\)\(\displaystyle\lim_{n \to \infty}n\)\(=sup\mathbb{N}=\omega\)毫无理论支撑,是elim为反现行数学理论根据他【臭便】思想生造出来的等式。
综上陈述,elim才是【拒绝受教的数学盲,  所作的没有数学基础】的混世魔王。
回复 支持 反对

使用道具 举报

发表于 2025-8-2 14:39 | 显示全部楼层
对elim《浅析顽瞎目测》的非正式回答(正式回答待后补上)
1、什么是目测法。elim所谓的目测法是数学中的常用方法:如再求数列极限我们总是先求数通项的一般表达式\(a_n=f(n)\),再对\(a_n=f(n)\)两边取极限。又如在求数项级数和的计算中,我们总是先示该数项级数的前n项和\(S_n=f(n)\)再对等式\(S_n=f(n)\)两端取极限得\(s=\displaystyle\lim_{n \to \infty}S_n\); 同样在求单调集列极限集时,我们也总是先求该集列的通项表达式\(A_n=f(n)\)再根据单调极限集的定义求\(\displaystyle\lim_{n \to \infty}A_n\)\(=\displaystyle\lim_{n \to \infty}f(n)\).由于这种数学中的常规方法算出的结果与elim【骤变】之法算出的结果不一致。所以elim把这各方法贬之为目测法。
2、“数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整休“这句话来自康托尔《超穷数理论基础》,(页码行号自己去查)。
3、\(\omega\)是最小的超穷序数而不是最小无穷序数是第一个极限序数。在现行中学中最小的极限序数是0,而不是\(\omega\)!
4、\(\displaystyle\lim_{n \to \infty}(n-m)=\)\(\displaystyle\lim_{n \to \infty}n\)\(=sup\mathbb{N}=\omega\)毫无理论支撑,是elim为反现行数学理论根据他【臭便】思想生造出来的等式。
综上陈述,elim才是【拒绝受教的数学盲,  所作的没有数学基础】的混世魔王。
回复 支持 反对

使用道具 举报

发表于 2025-8-2 17:02 | 显示全部楼层
对elim《浅析顽瞎目测》的非正式回答(正式回答待后补上)
1、什么是目测法。elim所谓的目测法是数学中的常用方法:如再求数列极限我们总是先求数通项的一般表达式\(a_n=f(n)\),再对\(a_n=f(n)\)两边取极限。又如在求数项级数和的计算中,我们总是先示该数项级数的前n项和\(S_n=f(n)\)再对等式\(S_n=f(n)\)两端取极限得\(s=\displaystyle\lim_{n \to \infty}S_n\); 同样在求单调集列极限集时,我们也总是先求该集列的通项表达式\(A_n=f(n)\)再根据单调极限集的定义求\(\displaystyle\lim_{n \to \infty}A_n\)\(=\displaystyle\lim_{n \to \infty}f(n)\).由于这种数学中的常规方法算出的结果与elim【骤变】之法算出的结果不一致。所以elim把这各方法贬之为目测法。
2、“数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整休“这句话来自康托尔《超穷数理论基础》,(页码行号自己去查)。
3、\(\omega\)是最小的超穷序数而不是最小无穷序数是第一个极限序数。在现行中学中最小的极限序数是0,而不是\(\omega\)!
4、\(\displaystyle\lim_{n \to \infty}(n-m)=\)\(\displaystyle\lim_{n \to \infty}n\)\(=sup\mathbb{N}=\omega\)毫无理论支撑,是elim为反现行数学理论根据他【臭便】思想生造出来的等式。
综上陈述,elim才是【拒绝受教的数学盲,  所作的没有数学基础】的混世魔王。
回复 支持 反对

使用道具 举报

发表于 2025-8-2 21:29 | 显示全部楼层
对elim《浅析顽瞎目测》的非正式回答(正式回答待后补上)
1、什么是目测法。elim所谓的目测法是数学中的常用方法:如再求数列极限我们总是先求数通项的一般表达式\(a_n=f(n)\),再对\(a_n=f(n)\)两边取极限。又如在求数项级数和的计算中,我们总是先示该数项级数的前n项和\(S_n=f(n)\)再对等式\(S_n=f(n)\)两端取极限得\(s=\displaystyle\lim_{n \to \infty}S_n\); 同样在求单调集列极限集时,我们也总是先求该集列的通项表达式\(A_n=f(n)\)再根据单调极限集的定义求\(\displaystyle\lim_{n \to \infty}A_n\)\(=\displaystyle\lim_{n \to \infty}f(n)\).由于这种数学中的常规方法算出的结果与elim【骤变】之法算出的结果不一致。所以elim把这各方法贬之为目测法。
2、“数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整休“这句话来自康托尔《超穷数理论基础》,(页码行号自己去查)。
3、\(\omega\)是最小的超穷序数而不是最小无穷序数是第一个极限序数。在现行中学中最小的极限序数是0,而不是\(\omega\)!
4、\(\displaystyle\lim_{n \to \infty}(n-m)=\)\(\displaystyle\lim_{n \to \infty}n\)\(=sup\mathbb{N}=\omega\)毫无理论支撑,是elim为反现行数学理论根据他【臭便】思想生造出来的等式。
综上陈述,elim才是【拒绝受教的数学盲,  所作的没有数学基础】的混世魔王。
回复 支持 反对

使用道具 举报

发表于 2025-8-2 21:31 | 显示全部楼层

elim离开循环论证,证明不了任何一个数学命题;elim离开非人类语言说不完一句鸟语!养子如此,可悲可叹。
对elim《浅析顽瞎目测》的非正式回答(正式回答待后补上)
1、什么是目测法。elim所谓的目测法是数学中的常用方法:如再求数列极限我们总是先求数通项的一般表达式\(a_n=f(n)\),再对\(a_n=f(n)\)两边取极限。又如在求数项级数和的计算中,我们总是先示该数项级数的前n项和\(S_n=f(n)\)再对等式\(S_n=f(n)\)两端取极限得\(s=\displaystyle\lim_{n \to \infty}S_n\); 同样在求单调集列极限集时,我们也总是先求该集列的通项表达式\(A_n=f(n)\)再根据单调极限集的定义求\(\displaystyle\lim_{n \to \infty}A_n\)\(=\displaystyle\lim_{n \to \infty}f(n)\).由于这种数学中的常规方法算出的结果与elim【骤变】之法算出的结果不一致。所以elim把这各方法贬之为目测法。
2、“数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整休“这句话来自康托尔《超穷数理论基础》,(页码行号自己去查)。
3、\(\omega\)是最小的超穷序数而不是最小无穷序数是第一个极限序数。在现行中学中最小的极限序数是0,而不是\(\omega\)!
4、\(\displaystyle\lim_{n \to \infty}(n-m)=\)\(\displaystyle\lim_{n \to \infty}n\)\(=sup\mathbb{N}=\omega\)毫无理论支撑,是elim为反现行数学理论根据他【臭便】思想生造出来的等式。
综上陈述,elim才是【拒绝受教的数学盲,  所作的没有数学基础】的混世魔王。
回复 支持 反对

使用道具 举报

发表于 2025-8-2 21:32 | 显示全部楼层

        因为ω是极限序数,所以\(\nu(=\displaystyle\lim_{n \to \infty}n\)不是ω闪直接前趋,所以\(\displaystyle\lim_{n \to \infty}(n\)\(+1≠ω\),又因ω的后继是ω+1,所以\(\displaystyle\lim_{n \to \infty}(n+1)\)也不是ω的后继。所以\(\displaystyle\lim_{n \to \infty}(n+1)<ω\),所以\(\displaystyle\lim_{n \to \infty}(n+1)\in\mathbb{N}\)(即皮亚诺公理对\(\nu=\displaystyle\lim_{n \to \infty}n\)成立)。因为\(\displaystyle\lim_{n \to \infty}(n+1)>\)\(\displaystyle\lim_{n \to \infty}n\),所以\(\nu=\displaystyle\lim_{n \to \infty}n\)不是\(\mathbb{N}\)中的最大数.这也是在\(\mathbb{N}\)只有更大没有最大的内在原因。同时,这也与你证得的\(\displaystyle\lim_{n \to \infty}n\)是\(\mathbb{N}\)的最小上界一致的。其实就算你所以野蛮地把\(\displaystyle\lim_{n \to \infty}n\)驱逐出\(\mathbb{N}\),你也证明不了\(\mathbb{N}\)中的元素都是有限自然数!因为\(\mathbb{N}\)中值为无穷的元素还很多嘛!故此,eim的\(\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)纯属扯淡!想以此证明自然数皆有限数纯属妄想!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 17:22 , Processed in 0.100251 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表