数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
12
返回列表 发新帖
楼主: kingwang82

[原创]二进制思想对角谷猜想的证明!

[复制链接]
发表于 2012-7-20 12:01 | 显示全部楼层

[原创]二进制思想对角谷猜想的证明!

下面引用由kingwang822012/07/20 00:30am 发表的内容:
我的证明说的最终趋势是减少的,不是说它的区间是减少的,这个猜想又叫冰雹猜想,所以他肯定是在原始数的上下浮动的,但是不管怎么浮动,最终的趋势趋向于1
感觉到的“趋势”还不是证明,你必须拿出严谨的数学推导,证明其序列是收敛的。。
发表于 2012-7-20 12:19 | 显示全部楼层

[原创]二进制思想对角谷猜想的证明!

下面引用由塞上平常心2012/07/20 00:01pm 发表的内容:
感觉到的“趋势”还不是证明,你必须拿出严谨的数学推导,证明其序列是收敛的。。
正确!
    要证明万数归一的本质!
    哥猜早已有“趋势”,也没有得到证明!?
发表于 2012-7-20 20:26 | 显示全部楼层

[原创]二进制思想对角谷猜想的证明!

kingwang82先生:您好!
    乘3,在二进制数中自然就是乘11,实际运算就是错位加法。先生喜欢用减法我并不反对,各人的习惯总是有区别的。不过3N+1的计算是一个序列的迭代计算过程,我习惯于用我的方法在计算机屏幕上这样的计算过程(举例如下):
        1101110111000010101110111 (29066615)
      101001100101001000001100110 (87199846/2=43599923)
     111110010111101100010011010 (13799770/2=65399885)
   1011101100011100010011101000 (196199656/8=24524957)
100011000101010100111011000 (73574872/8=9196859)
   …………
(每行数字乘11(3)加1即得出下一行,实际计算中,尾部的0就不写了)
我觉得这样计算对整理、观察、分析对比较方便。先生也可展示你的计算过程,相互交流。
发表于 2012-7-20 20:36 | 显示全部楼层

[原创]二进制思想对角谷猜想的证明!

不要走偏锋!
               巍巍宝塔无穷层,
               层层宝塔四盏灯,
               最高一层灯最明,
               万数归一法必行!
您需要登录后才可以回帖 登录 | 注册

本版积分规则

LaTEX预览输入 教程 符号库 加行内标签 加行间标签 
对应的 LaTEX 效果:

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-23 10:53 , Processed in 0.087856 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill输入:

Latex代码输入: